Costs of PRRS & ROI of interventions

Use of an economic simulator

b UNIVERSITÄT BERN

Universität Bern | Universität Zürich

vetsuisse-fakultät

Heiko Nathues

Prof. Dr. med. vet. habil. Prof. h.c., PhD
Dipl. ECPHM, FTA Schweine, Cert Vet Ed, FHEA
EBVS® European Veterinary Specialist in Porcine Health Management

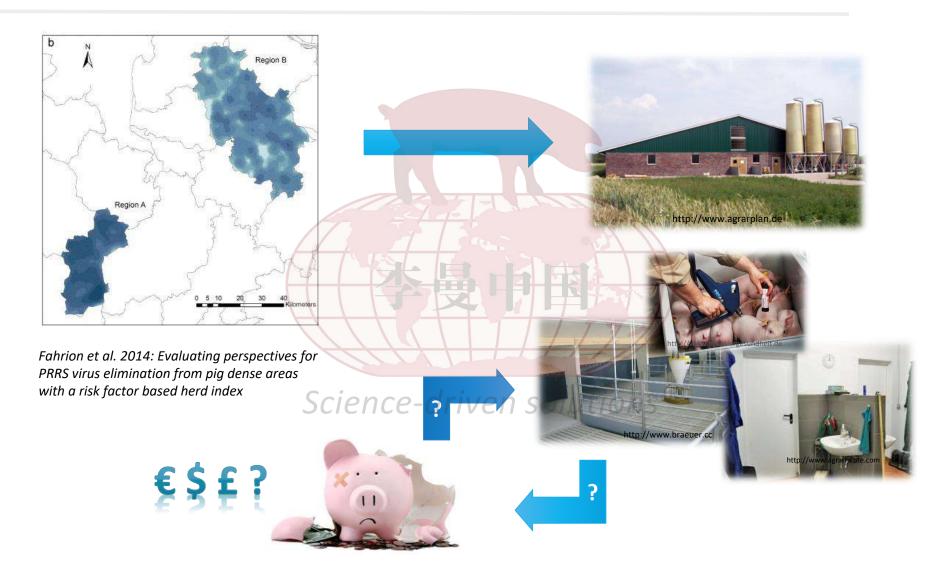
Clinic for Swine, Vetsuisse Faculty, University of Bern, Switzerland

Economic impact of PRRS

UNIVERSITÄ Bern

• Holtkamp et al., 2013:

\$664 million losses in 2013 (USA):


- Science-driven solutions®
- \$115 per sow
- \$4.7 per pig marketed

How to combat PRRS?

UNIVERSITÄT Bern

Objectives

UNIVERSITÄT BERN

- Create a **practical calculation tool** for farmers and veterinarians
- Assess
 - economic impact of disease for different disease severities and
 - efficiency of intervention strategies at farm level

Science-driven solutions®

Agenda

UNIVERSITÄT Bern

- Cost model
 - theoretical background
 - farm example
- Intervention strategies
 - theoretical background
 - farm example
- Practical application

JNIVERSITÄT RERN

Universität Bern | Universität Zürich

vetsuisse-fakultät

Cost model

OCT 2024

Model requirements

Adaptable to farm specific ...

- Production system
- Production rhythm
- Suckling period
- (Re-)productive performance
- Disease severity
- Prices

Science-driven solutions®

Model process

b UNIVERSITÄT BERN

- 1. Production model
- processes to farm outputs
 - 2. Epidemiological model
 - impact of PRRS at different stages
 - 3. Gross margin and enterprise budget analysis
 - costs & revenue

Science-driven solutions®

- 4. Partial budget analysis
- net losses due to PRRS

Epidemiological model – impact of PRRS

UNIVERSITÄ Bern

	Parameter	Change
	Return-to-estrus rate %	7
ing	Abortion rate %	7
eedi	Abortion rate % Piglets born alive / sow / litter Pre-weaning mortality %	7
Bro	Pre-weaning mortality %	7
	Weight at weaning kg	7
\S	Days in nursery	1/7
Nursery	PRRS morbidity in weaners %	7/ 7
Ž	Mortality in weaners % Solution	ns ®7
ing	Days in fattening	7
Fattening	PRRS morbidity in fatteners %	7
Fat	Mortality in fatteners %	7

Quantification of impact

UNIVERSITÄT BERN

same features

Negative farm

Negative model:

Diseased model:

Production inputs

- Abortion rate
- Weight at weaning
- Duration of fattening
- •

- Piglets weaned
- Inseminations needed
- kg feed consumed
- ..

Costs and Revenue

- Revenue for pigs slaughtered Solutions ®
- Replacement cost
- Feed costs
- ...

BASELINE

production

outputs

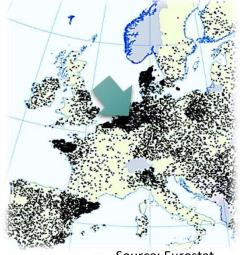
• BASELINE abortion rate

Costs and Revenue

...

Δ = loss due to PRRS

Farm example


UNIVERSITÄT BERN

- Farrow-to-finish farm
- 1000 working sows
- no PRRS vaccination
- 1-weekly production rhythm
- 3 weeks of suckling
- 35% replacement rate per year
- 30 kg weight of pigs at end of nursery
- 120 kg live weight of pigs at finishing

www.atlas-agrarstatistik.nrw.de/

Source: Eurostat

Negative versus example scenario

UNIVERSITÄ Bern

Parameter	Negative farm		
Return-to-estrus rate %	10.0		
≅ Abortion rate %	2.0	5 _	«referen
Piglets born alive / sow / litter Pre-weaning mortality %	12.7		farm , scenar
Pre-weaning mortality %	11.0	THE.	Sceriai
	6		
≥ Days in nursery	45		
Weight at weaning kg Days in nursery PRRS morbidity in weaners % Mortality in weaners %			
Mortality in weaners %	drive 3.0	olutions [®]	
	119	<i>716</i> (1011)	
១ PRRS morbidity in fatteners %	-		
प्रमुख्य Days in fattening PRRS morbidity in fatteners % Mortality in fatteners %	1.5		

Negative versus example scenario

	Parameter	Negative farm	Example farm
	Return-to-estrus rate %	10.0	7 13.5
ing Bu	Abortion rate %	2.0	3.9
ed	Piglets born alive / sow / litter Pre-weaning mortality %	12.7	11.4
Bre	Pre-weaning mortality %	11.0	₹ 13.5
	Weight at weaning kg	6	5.5
<u>></u>	Days in nursery PRRS morbidity in weaners %	45	7 50
ırse	PRRS morbidity in weaners %		7 20.0
ž	Mortality in weaners %	drive 3.0	7,+10.0R
	Days in fattening	119	7 127
_	PRRS morbidity in fatteners %	-	7 20.0
Fat	Mortality in fatteners %	1.5	₹ 3.0

Leman China Swine Conference

«Moderately» affected in all farm parts

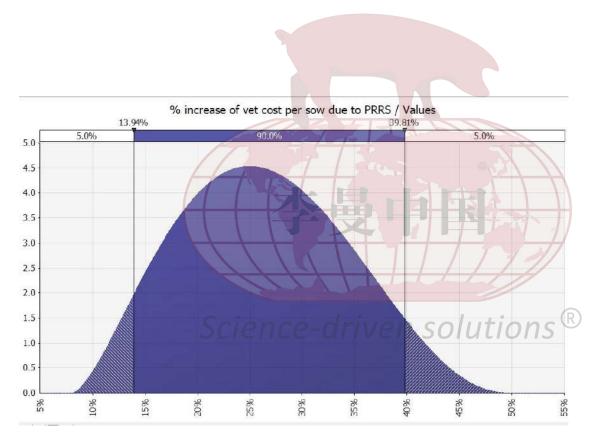
Costs

Diseased farm:

• flat

in vet & labour cost

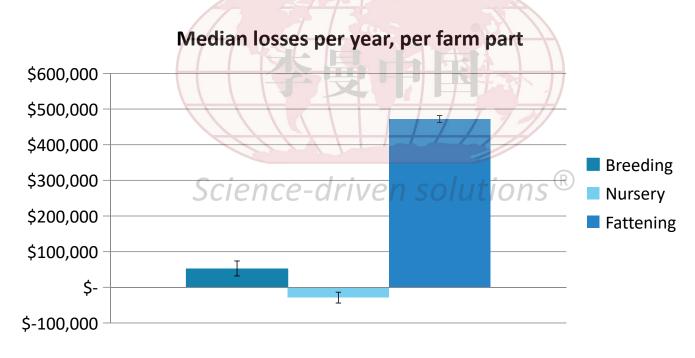
OCT 2024 Leman China Swine Conference © H. Nathues


Model specifications

UNIVERSITÄ Bern

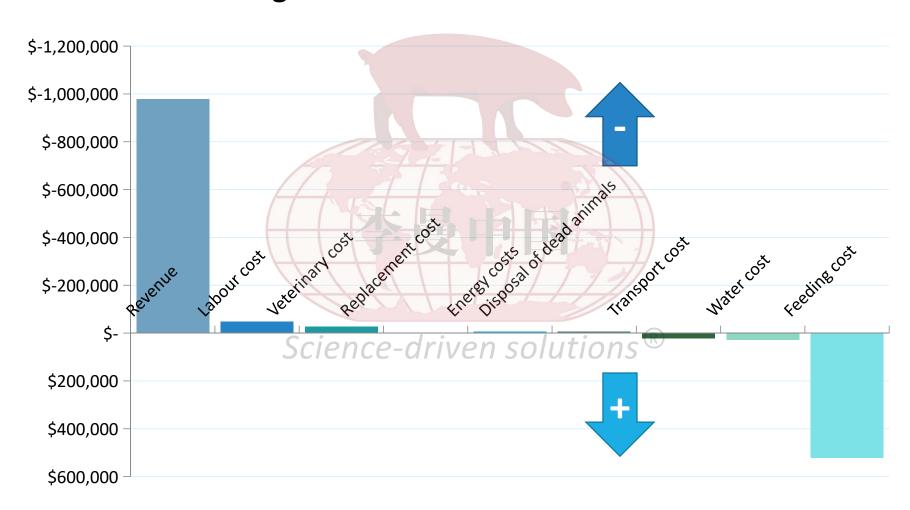
...Uncertainty and variability?

=> distributed inputs *and outcomes*!


Results – costs of PRRS

D	
UNIVERSITÄT	
BERN	

Total losses per y	ear	US\$
Median		494'468
5%ile		449'911
95%ile	R	542'069


Impact of PRRS on individual costs

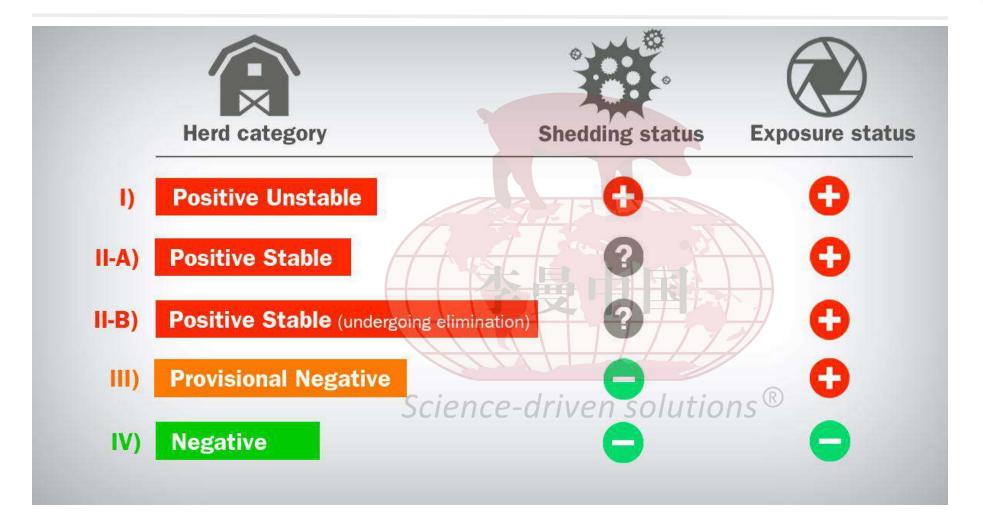
b UNIVERSITÄT BERN

Difference to negative status:

JNIVERSITÄT BERN

Universität Bern | Universität Zürich

vetsuisse-fakultät


Intervention strategies

Assess the status of your herd first!

b UNIVERSITÄT BERN

Intervention strategies

b UNIVERSITÄT BERN

Elimination procedures

- 1. Depop / repop (D/R)
- 2. Close & roll-over (C&R)
- 3. Test & removal (T&R)

Vaccination protocols:

- 4. 3-monthly mass vaccination of sows (MS)
- 5. Vaccination (6-60) of sows
- 6. MS and vaccination of piglets
- 7. 6-60 and vaccination le of piglets Ven Solu

Biosecurity & Management

8. Improvement in Biosecurity & Management (BSM)

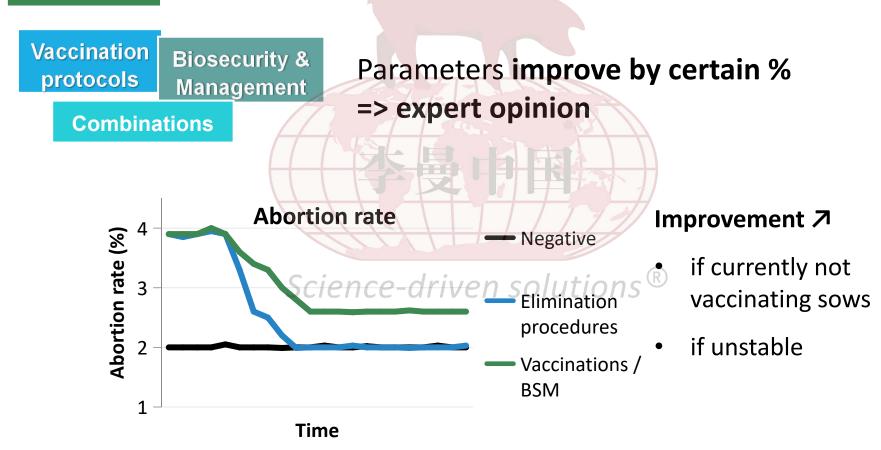
9. - 12.

Combinations of vaccinations & BSM

for:

- farms with sows
- T&R: stable, seroprev. <25%; no vacc.
- farms with sows
- depending on current vacc.

• all farms


Effect of interventions – assumed improvement

Elimination procedures

Farm negative => all performance / disease parameters take baseline values of negative herd

OCT 2024 Leman China Swine Conference © H. Nathues

Costs of interventions

b UNIVERSITÄT BERN

Intervention

1. Depop / repop (D/R):

2. Close & roll-over (C&R):

3. Test & removal (T&R):

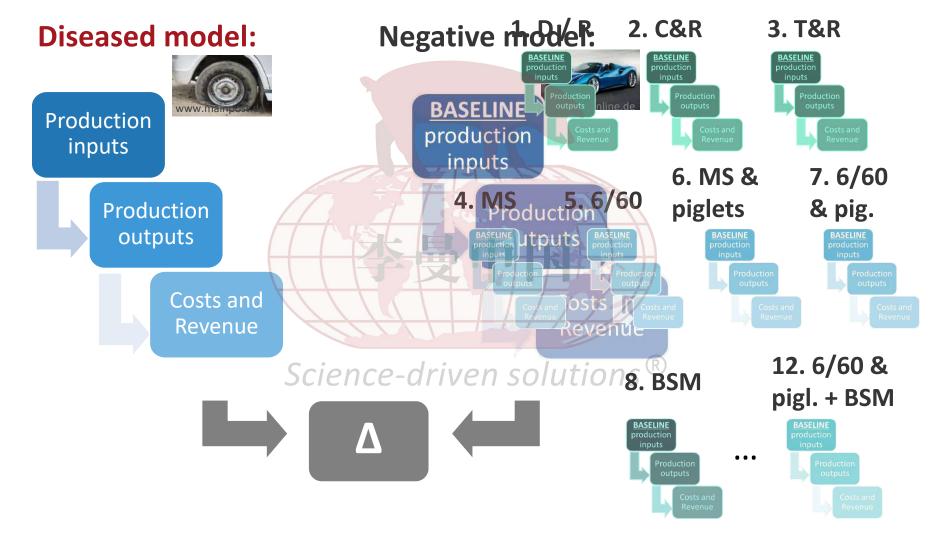
Costs

- gap period (no production): costs
- and revenue \(\seta \)
- cleaning & desinfection
- restocking whole herd
- gilts for 6 months in advance:
 purchase costs ⋈, feed costs etc. ↗
- space requirements
- laboratory costs
- replacement cost

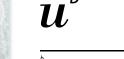
Science-driven solutions®

4. -7. Vaccination protocols:

- basic immunization
- regular vaccination costs
- 8. Biosecurity & Management (BSM):
- dependent on farm situation


biosecurity

Quantification of impact



UNIVERSITÄT BERN

Calculation of outcome

Net present value of (future)

extra revenue and extra costs

due to an intervention over 5 years.

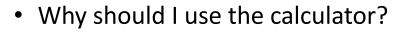
= «Expected Value» (EV)

OCT 2024 Leman China Swine Conference © H. Nathues

JNIVERSITÄT BERN

Universität Bern | Universität Zürich

vetsuisse-fakultät


Practical application

Practical application of the model

UNIVERSITÄ BERN

What do I need to enter?

Which kind of results can I expect?

Science-driven solutions®

Practical application – «quick & dirty»

UNIVERSITÄT BERN

Breeding:	
Please indicate:	
Average number of working sows in your farm	1000
Length of suckling period (weeks)	3
Return to estrus rate (%)	10.0%
Abortions (%)	2.0%
Average piglets born alive per sow per litter	12.7
Average preweaning mortality (%)	11.0%
Average weight of your pigs at weaning	6
Nursery:	
Please indicate:	
Average days of your weaners in nursery	50
Average weight of your weaners sold	25
Percentage of weaners clinically affected by	
PRRS (including those later dying) (%)	20%
Mortality in weaners (%)	10%
Fattening: Scien	ce-dri

all other input parameters (prices etc.):

default values (country specific)

- fast
- only most important data necessary
 - rough estimate
 - does not account for farm specific situation

Practical application – «detailed and precise»

1

0

1.5

UNIVERSITÄT Bern

F	attening:		
		Enter	
	Enter your farm data	value:	
	Please indicate:		_
	Average days of fattening until your pigs go to		
	slaughter	127	
	Average days of downtime between turns	5	5
	Average weight of your pigs at slaughter	120.3	
	Percentage of fatteners clinically affected by		
	PRRS (including those later dying) (%)	20%	
	Mortality in fatteners (%)	3%	
			Default
	Enter your economic data	EUR	values
	Please indicate:		
	Price per unit live weight of a fattener sold	1.2	1.2
	Total veterinary cost per fattening pig	1.3	1.3
	Fatteners' feed price/1000 weight units	280	280
	Energy cost per pig produced (incl. water except		
	drinking water for animals)	2.5	2.5
	Transport cost per unit live weight slaughter pig	0.02	0.02
	Do you pay transport also when buying fatteners,		
	please select from dropdown list:	yes	C
	If yes, please indicate cost per weight unit pig	0.04	0.04
	Labour cost per pig produced	4.5	4.5
	Building cost per pig produced	5	5
	Equipment cost per pig produced	2	2
	Inspection, Levy and Insurance cost per pig		

produced

Any other variable cost per pig produced

Any other fix cost per pig produced

Cost model

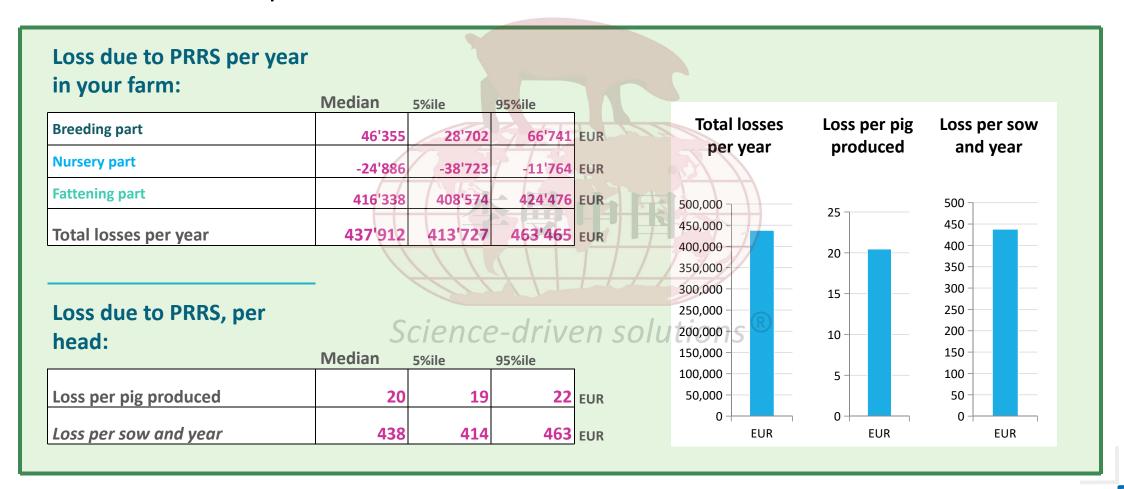
possibilities for adjustment: own versus default values (country-specific)

- mainly prices
- sows:
 - replacement rate
- ience-driven solution rhythm
 - current vaccination scheme!

Practical application – «detailed and precise»

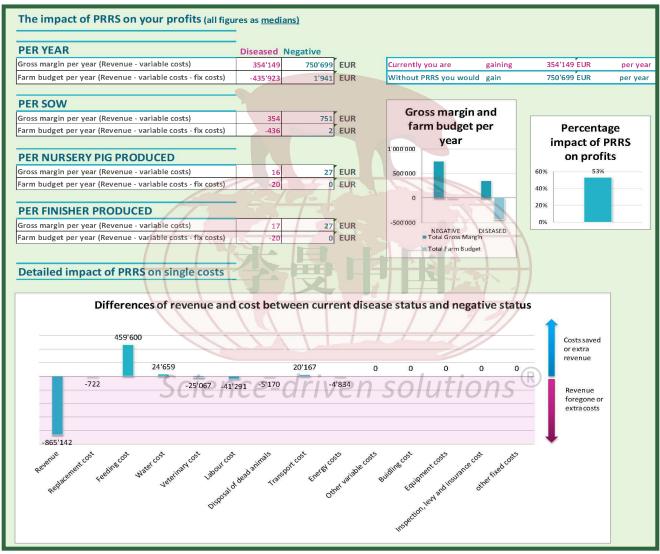
UNIVERSITÄT BERN

Intervention	Value / possible for your farm type?	Interventions
Depop/repop (D/R)	YES	inter vericions
Cleaning and desinfection / sow (incl. water, energy, chemicals etc.) Extra labour cost / sow Other cost / sow	10.00 30.00 0.00	• Costs
Close & roll-over (C&R)	YES	
Extra cost (building etc.) for providing space to all replacement gilts needed for the following 6 months (time period of herd closure) / sow	30.00	• Diagnostics:
Test & removal (T&R)	NO	 seroprevalence in
If you do not vaccinate against PRRS : how many out of 18 samples taken from sows were antibody-positive?	0	sows
Total cost for serological testing per sow	30.00	herd stability
Only for farrow-to-finish herds: cost for strict compartmentalization of sows after T&R (to avoid spill-back)	5.00	R)
Did you detect wild type virus in suckling pigs within the last 12 months?	IVEN SOII	TODS
Biosecurity & Management (BSM)	YES	➤ T&R?
What do you think will be the overall % increase in total costs		% improvement
for permanently improving biosecurity and management	2%	
Did you detect wild type virus in weaning pigs within the last		
12 months?	yes	-
Did you detect wild type virus in fattening pigs within the last 12 months?	yes	


Readout «Cost of PRRS in your farm»

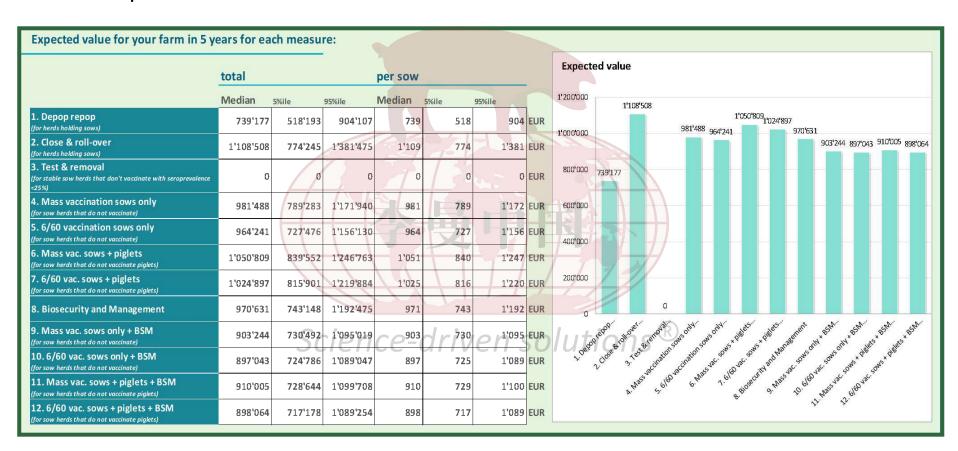
UNIVERSITÄT BERN

Basic outputs:


Readout «Cost of PRRS in your farm»

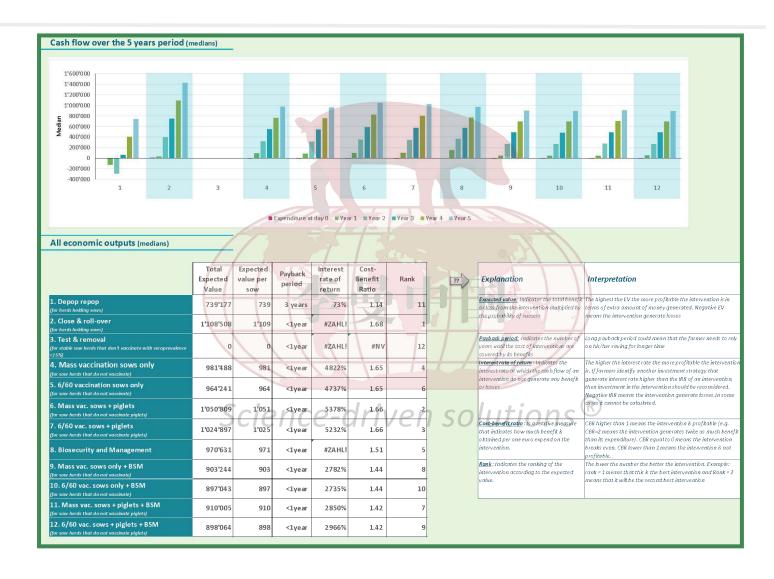
b UNIVERSITÄT BERN

Optionally:


Readout «Interventions in your farm»

UNIVERSITÄT BERN

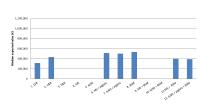
Basic outputs:

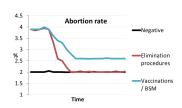

Readout «Interventions in your farm»

b UNIVERSITÄT BERN

Optionally:

Summary & conclusions


b UNIVERSITÄT BERN


Considerable losses in moderately PRRS-affected farms

Highest impact in fattening (revenue foregone)

 Different intervention strategies have been proven to work against PRRS >>> model can estimate their economic efficiency

- Remember: it is an economic PRRS model!
 - cost-efficiency, simplification

- Prudent use!
- Useful tool for veterinarians / farmers!

Thank you very much for your attention!

Contact

Prof. Dr. med. vet. habil. Prof. h.c. Heiko Nathues. PhD Dipl. ECPHM, FTA Schweine, Cert Vet Ed, FHEA EBVS® European Veterinary Specialist in Porcine Health Management

! Head of the Clinic for Swine

President of the European College of B Past-President of the European College of Porcine Health Management (ECPHM)

Bremgartenstrasse 109 a CH-3012 Bern Tel. +41 (0)31 684 23 44 heiko.nathues@unibe.ch

