Case study of PRRS eradication in newly built pig farms

From pre-eradication assessment of infection parameters to eradication evaluation

Science-driven solutions[®] Chaosi Li

DVM, China Agricultural University Boehringer Ingelheim PRRS&CSF Technology

Porcine Reproductive and Respiratory Syndrome Virus hereinafter referred to as "PRRSV"

Contents

- Definition and criterion of PRRSV eradication
- Why to eradicate PRRSV?
- How to eradicate PRRSV?

Science-driven solutions®

PRRSV status classification system 2020 by American Association of Swine Veterinarians (AASV)

PRRSV status classification	Antibody detection- shedding status	Antibody detection-exposure status	Classification criteria	Supporting evidence required
positive unstable, high prevalence (I- A)	positive, high proportion of shed pigs	positive	Default Category I for herds that do not meet other criteria	None required
positive unstable, low prevalence (I- B)	positive, low proportion of shed pigs	positive	Weaned piglets remain antigen-positive for 90 consecutive days <25%	Monthly test Test serum from weaning-age pigs 30 samples (five samples mix for one) Weaned piglets remain antigen-positive for 90 consecutive days <25% Tested after 2 weeks of vaccination (if vaccinated)
positive stable (II)	uncertain	positive	Weaning piglets remain antigen-negative for 90 consecutive days	Monthly test Test serum from weaning-age pigs 60 samples (ten samples mix for one) Weaned piglets remain antigen-negative for 90 consecutive days
positive stable, immunity achieved through vaccination (II-vx)	uncertain	positive Sc.	Weaned piglets remain antigen-negative for 90 consecutive days ience-driven solutions [®]	Monthly test Test serum from weaning-age pigs 60 samples (ten samples mix for one) Weaned piglets remain antigen-negative for 90 consecutive days Tested after 2 weeks of vaccination (if vaccinated)
provisional negative (III)	negative, no shedding	negative	PRRSV positive pigs are removed from the herd and there's on infection since mixing the introduced PRRSV naïve gilts for 60 days. No vaccination.	PRRSV naïve gilts. Growing pigs confirmed ELISA negative.
negative (IV)	negative, no shedding	negative	All pigs that previously tested positive for infection are removed from the herd. Herd confirmed ELISA negative for one year.	Confirmed ELISA negative for one year. One year after classified as IV.

Holtkamp DJ, Polson DD, Torremorell M, Morrison B, Classen DM, Becton L, Henry S, Rodibaugh MT, Rowland RR, Snelson H, Straw B, Yeske P, Zimmerman J; American Association of Swine Veterinarians; United States Department of Agriculture PRRS-Coordinated Agricultural Project. Terminologie zur Klassifizierung des PRRSV-Status von Schweineherden [Terminology for classifying the porcine reproductive and respiratory syndrome virus (PRRSV) status of swine herds]. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2011;39(2):101-12. German. PMID: 22138772.

Classification by China Animal Disease Control Center

文件

I. <u>Eradication standards</u> are met if the requirements listed below are followed :

(1) The samples of boars, sows and gilts were all negative for antibody detection of PRRSV.

(2) Immunization ends for more than two years and there's no clinical cases.

(3) Pass the site comprehensive review.

II. Sampling requires experts of the assessment team to design plans and supervise the tasks and provincial disease prevention and control

Science-drive institutions should also work with them.

中国动物疫病预防控制中心关于印发 《动物疫病净化示范场评估标准(试行) (2021版)》《动物疫病净化创建场评估标准 (试行)(2021版)》的通知

X107化时旧天祖主他枫刀云				
检测项目	检测方法	抽样种群	抽样数量	样本类型
	ELISA	种公猪	生生产公猪存栏 50 头以下,100%采样; 生产公猪存栏 50 头以上,按照证明无 疫公式计算(CL=95%,P=3%)	血清
抗体检测		生产母猪 后备种猪	按照证明无疫公式计算(CL=95%, P=3%);随机抽样,覆盖不同猪群	血清

C 海仙河从南卧宫长测大计

中国动物疫病预防控制中心 (农业农村部屠宰技术中心)

疫控监[2021]4号

Project Farm's PRRSV Progression Schedule and Diagnosis

The number of miscarriages per thousand sows in different PRRSV status

Negative farms: +1 weaner/litter

Schelkopf A, Nerem J, Cowles B, Amodie D, Swalla R, Dee S. Reproductive, productivity, and mortality outcomes in late-gestation gilts and their litters following simulation of inadvertent exposure to a modified-live vaccine strain of porcine reproductive and respiratory syndrome (PRRS) virus. Vaccine. 2014 Aug 6;32(36):4639-43. doi: 10.1016/j.vaccine.2014.06.073. Epub 2014 Jun 24. PMID: 24975816.

PRRS+ medication costs for nursery pigs enhanced 3 times

Rearing phase:	Weaning		Fattening	
Productive chain ¹ :	PRRS-	PRRS+	PRRS-	PRRS+
Pig (thousand)	116.0	65.3	108.2	54.4
Starting live weight, kg	7.1	6.9	32.0	31.7
Final live weight, kg	32.2	31.3	170.9	168.5
Average age, days	55.9	59.8	199.0	203.4
Daily live weight gain, g	449	407	699	674
Feed to gain	Scien7æ-dr	iven i "83 utio	ons 3.43	3.62
Total losses ²	2.55 ^A	14.49 ^B	4.64 ^A	9.04 ^{AB}
Cost index ²	1.63 ^{aB}	1.91 ^{bB}	0.88 ^A	0.93 ^A
Medication costs ² , €/kg	0.04 ^A	0.12 ^B	0.03 ^A	0.04 ^A

Trevisi P, Amatucci L, Ruggeri R, Romanelli C, Sandri G, Luise D, Canali M, Bosi P. Pattern of Antibiotic Consumption in Two Italian Production Chains Differing by the Endemic Status for Porcine Reproductive and Respiratory Syndrome. Front Vet Sci. 2022 Mar 28;9:840716. doi: 10.3389/fvets.2022.840716. PMID: 35419448; PMCID: PMC8996257.

Values in other respects

 State policy
 Premiums of PRRSV naïve gilts
 Brand value
 Animal Welfare Science-driven solutions[®]

. . .

5. Reduction of PRRSV recombination and mutation

Target and Introduction of the Eradication Program

Program scope and target

- Use <u>the PRRSV positive herd in the existing system</u> to establish a PRRSV negative herd of 1500 base sows in a new farm and to sell PRRSV naïve breeding pigs
- Requirements: shorten the cycle; a certain range of losses is acceptable.
 Program introduction
- The eradication program includes environmental assessment of the target farms, assessment and selection of breeding farms/breeding programs, implementation of the eradication program, monitoring of the program process, and eradication validation.
- It takes 16 weeks from homogenous infection of herd to stable TTS and 37 weeks from homogenous infection of herd to . Thirteen plus months have passed since the start of the whole program.

Implementation of Eradication Strategy

- Direct purchase of PRRSV naïve pigs to build herd genetic loss of our own herd
- 2. Test removal: suitable for stabilized small herds
- 3. Introduction closure homogenous infection
 - Build herds by introducing high-litter-production sows farms do not have the required number of high-litter-

production sows Science-driven solutions®

- Gilts introduced to farms
 - Wild virus/vaccine?

Wild virus/vaccine : make decisions in light of eradication cycle and economic losses

/ild	Estimated economic losses : 95,784RMB Vacci	ne 🖪
lus	TTS1: 26.3 weeks	Τ
	Cost1.Medicine=16.9 RMB/head*1500 head=25,350RMB	<u>C</u>
<u>Cc</u>	ost2.Death: vaccine + feed cost before death= <u>70,434RMB</u>	С
	Cost of weaning: 420RMB	
	Weight of dead weaners : 7KG	
	Average weight of dead pigs: 21 KG	· / R
Weight	t of weaners – new added weight before death: 14KG (21KG – 7KG)	C
•	FCR (Weight of weaners – new added weight before death) : 1.96	
	• FCR before death: 27.44KG (14KG x 1.96 FCR)	11
	• Unit price of nursery feed: 4.58RMB/KG (freight included)	ions®
	• Feed consumption of dead pigs : 126RMB/Head	0115
	• Losses caused by dead pigs: 546RMB/Head (126+420)	
	• No. of dead pigs=1500*8.6%=129 Head	

Vaccine	Estimated input:	<u>62,148RMB</u>

TTS¹: 32 weeks

Cost1.Medicine: 6.5RMB/Head*1500Head=9,750RMB

<u>Cost2.Death</u>: vaccine + feed cost before death= $34,398\pi$

- Losses caused by dead pigs: 546RMB/Head (126+420)
- No. of dead pigs=1500*4.2%=63Head

Cost3.Vaccine: 12RMB/Head*1500Head=<u>18,000RMB</u>

Specific parameters refer to the statistics of death and drug cost after the introduction of two batches pigs in Kui Qiang Farm

Refer to Luiz.2023 for the economic model

1. Linhares DC, Cano JP, Torremorell M, Morrison RB. Comparison of time to PRRSv-stability and production losses between two exposure programs to control PRRSv in sow herds. Prev Vet Med. 2014 Sep 1;116(1-2):111-9. doi: 10.1016/j.prevetmed.2014.05.010. Epub 2014 Jun 2. PMID: 24931129.

Eradication process of new farms: 4 critical juncture+4 stages+7 topics

August 17, 2022 Juncture 1: First batch introduction November 9, 2022 Juncture 2: PRRSV naïve pigs introduction + active infection of the whole herd TTS=16th Week Science-driven solutions[®] March 8, 2023 Juncture 3: PRRSV status 21th week remained stable for the herd \checkmark August 15, 2023 Juncture 4: PRRSV naïve 6-week

piglets

Eradication process of new farms: 4 stages+7 topics

Stage 1: Evaluation stage before introduction Objective: capabilities for eradication? Science-driven solutions @ Programs

farms

- 6. Biosafety optimization
- 7. Evaluation of eradication

1. Assessment of the eradication capacity of introduced

PRRSV Risk Assessment

- 1. Environmental assessment
- 2. Climate assessment
- 3. Biosafety assessment

- Distribution of surrounding pig farms
- Vegetation coverage around pig farms
- Terrain of pig farms
- Proportion of 4-10°C weather in the whole year in
 - the area where the pig farm is located
- Proportion of smoggy days

trunk road

- Frequency of recent pig movements on the public
- Science-driven solutions[®] an air filter device
 - Frequency of pigs moving outside
 - Frequency and method of gilt introduction

Moeller J, Mount J, Geary E, Campler MR, Corzo CA, Morrison RB, Arruda AG. Investigation of the distance to slaughterhouses and weather parameters in the occurrence of porcine reproductive and respiratory syndrome outbreaks in U.S. swine breeding herds. Can Vet J. 2022 May;63(5):528–534. PMID: 35502250; PMCID: PMC9009730. Andréia G Arruda, Nannong Pig Industry Conference, 2022

. . .

۲

Sanchez F, Galvis J A, Cardenas N, et al. Spatiotemporal relative risk distribution of porcine reproductive and respiratory syndrome virus in the southeastern United States[J]. arXiv preprint arXiv:2301.05774, 2023.

Galvis JA, Corzo CA, Machado G. Modelling and assessing additional transmission routes for porcine reproductive and respiratory syndrome virus: Vehicle movements and feed ingredients. Transbound Emerg Dis. 2022 Sep:69(5):e1549-e1560. doi: 10.1111/tbed.14488. Epub 2022 Mar 3. PMID: 35188711: PMCID: PMC9790477.

Environmental assessment

• The distance of the target farm to the surrounding farms is 2.78, 4.39 and 7.44 km, respectively

Environmental assessment

Vegetation coverage around pig farms

About 1 km from the nearest public trunk road, trees are straight in front of the farms; The farm air outlet faces the trunk road

The target farm is on the hillside, level with the trunk road and the nearest pig farm

Environmental assessment

Almost no sandstorm or haze; Wind speed Class 1- light air; < 10°C less than 3 months

There is still room to improve biosecurity level of outside the farm

5-20 m

≥3 km

There is still room to improve biosecurity level of outside the farm

Quick review of evaluation of PRRSV eradication capacity

- The newly built introduced farm enjoys a relatively ideal location with few pig farms in the surrounding areas and natural barriers between pig farms
- The weather conditions in the area are good with breeze and properly high temperature. There is almost no physical carrier of virus such as haze. Therefore, PRRSV is relatively easy to inactivate.iven solutions[®]
- There is still room to improve biosecurity level of outside the introduced farm, but the plans are always implemented in a timely and forceful manner. So, we have more opportunities to unleash the potential for upgrading the system.

Juncture 1: Batch introduction

- 1. Assessment of the eradication capacity of introduced farms
- 2. Selection of breeding pig supply farms and batches
 - Reducing death and culling rate in PRRSv positive

Science-driven solution Science Science Science Science Station Science Science Science Station Science Station Science Scienc

.e-urrverr soretreassie errograme

- 6. Biosafety optimization
- 7. Evaluation of eradication

Principle of selecting farms where we introduce pigs and their batches:

reduce the diversity of introduced strains

Objective: reduce the death rate of introduced herd and shorten the eradication period

- Negative farm>positive stable farm>positive unstable farm
- few types of strains > many types of strains
 - Introduction to single farm>Introduction to multi-farms
 - Single-batch introduction > multi-batch introduction

• Daniel Linhares.et.al. Managing PRRSV outbreak.2023

[•] Pileri E, Mateu E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet Res. 2016 Oct 28;47(1):108. doi: 10.1186/s13567-016-0391-4. PMID: 27793195; PMCID: PMC5086057.

Moura CAA, Philips R, Silva GS, Holtkamp DJ, Linhares DCL. Comparison of virus detection, productivity, and economic performance between lots of growing pigs vaccinated with two doses or one dose of PRRS MLV vaccine, under field conditions. Prev Vet Med. 2022 Jul;204:105669. doi: 10.1016/j.prevetmed.2022.105669. Epub 2022 May 13. PMID: 35594607.

The more diverse the strain is, the more the losses and the longer the stable period are

Trevisan, et al. 2022, Transboundary and Emerging Diseases

Breeding farm A	20220514
Testicular processing fluid	
Preimmune piglets	MLV
6 weeks of age	MLV
9 weeks of age	FALSE
12 weeks of age	HP-PRRS
Gilts	

Breeding farm B	20220514
Testicular processing fluid	
Preimmune piglets	MLV
6 weeks of age	MLV
9 weeks of age	HP-PRRS
12 weeks of age	HP-PRRS
Gilts	

Status of PRRSv and Diversity of Virus Strains at Breeding Farms

Test results in May 2022: Positive Stable With Vaccination (II-Vx) for all breeding farms

Query?

- . Sources of viruses in late nursery period?
- . Will MLV affect the sequencing results of field strains?
- 3. Can a single test determine the PRRSv class/status of a herd?

Sci Improved testing plan:ons®

- Increase sample size of piglets in weaning period and increase the estimated prevalence from 5% to 2-3%
- 2. Delay MLV immunization: from 14 days of age to post-weaning
- 3. Transform random sampling into risk-based sampling
- 4. Sequencing for all whose $CT \leq 32$
- 5. Monitor 3 batches continuously

Three Batches of 1,500 Weaned Gilts Were Introduced Continuously From the Breeding Farm A with Low PRRSv Diversity

Measures to Reduce Infection Pressure in Breeding Pig Supply Batches

Immunization/drug schedule adjustments: Reduce the potential of PRRS MLV introduction into breeding sites

- Piglets: adjust the immunization time of Ingelvac® PRRS MLV to post-weaning immunization, mixed with twistpak
- Sows: stop immunization of Ingelvac® PRRS MLV

Biosecurity optimization plan: Reduce field strain diversity and infection pressure of pigs in farrowing house

- Strictly prevent cross-fostering and no longer foster piglets after 48 hours (suckling piglets of target batches)
- Personnel management: Nursery house personnel are not allowed to enter farrowing house and mating and pregnancy house;
 Minimize the movement of personnel in farrowing house
- Strengthen material management: vaccine trolleys, pig stoppers, etc., and sterilize them well to reduce the risk of crosscontamination of tools
 Science-driven solutions[®]
- Reduce pig stress before and after farrowing (medication and operation)
- Set up separate farrowing house for gilts
- Only introduce piglets born from multiparous sows
- Suspend entry of gilts into herds (especially after the target batch is in late gestation)

Summary

Optimize testing plans to better understand PRRSv status/grade of breeding farms

- PRRSv Positive Stable (II) farm, or there is a certain probability of low prevalence, need to increase the sample size and change to a risk-based sampling method
- The success of wild-virus sequencing is affected in the short term after immunization with live PRRSv vaccines, and sampling for sequencing is recommended prior to immunization
- Increase sequencing volume to better understand the diversity of on-farm strains
- Choose an introduced site/batch with a single diversity of strains

Restrictive factors

• On-farm prevalence of HP-PRRS, not immune to MLV vaccine, rise in piglet mortality

Stage 2: Inactive period

- Slow the transmission of PRRSV in the herd
 - Reduce secondary bacterial infections

- 1. Assessment of the eradication capacity of introduced farms
- Selection of breeding pig supply farms and batches
 Reducing death and culling rate in PRRSv positive
- herd herd *b. Infection*-eradication PRRSv Infection Kinetics & *Science-driven solutions*®ce Programs
 - 6. Biosafety optimization
 - 7. Evaluation of eradication

Main objectives for each stage

Stage 1: before introduction

Objectives

- Reduce the proportion of pigs infected with PRRSV
- Reduce the diversity of PRRS strains

Stage 2: During introduction

•

Objectives 2 4 1

Prevent/monitor potential infection of exogenous pig_{/utions}® diseases during transport

Stage 3: after introduction-before artificial infection

Objectives

• Slow the transmission of

PRRSV

• Reduce the death rate

Methods and Principles of Implementation

- 1. Control positive rate in lactating piglets of introduced batches
- 2. Increase feeding area
- 3. Environmental control & stress management
- 4. Reduce the flow of people & materials across units
- *Science-driven solutions*[®] 5. Isolation of common pathogenic bacterium&drug susceptible test for sensitive drug screening
- 6. Inject sensitive antibiotics promptly

Phase I: Before Introduction

- Purpose:
- Mitigating infection rates in pre-starter through internal biosecurity
- Knowledge of prevalent strains and herd prevalence of transfer batches

1.1 Management of farrowing house

- Transfer piglets at 25 days of age
- Introduced batches should farrow within 3 days
- Abondon 6 piglets born from introduced gilts among the first batch

1.2 Drugs and vaccines (purpose: to prevent secondary infections between 4-10 weeks of age, mainly for common secondary bacteria in nursery period)

Follow normal health care procedures at breeding farms
No immunization of live PRRS vaccine to transfer piglets
1.4 Laboratory monitoring (purpose: to understand the prevalence and circulating virus strains the pig herds before transfer, and to find infectious disease materials)

• Testicular fluid from piglets of 3-5 days of age, full coverage, Science-driven solutions

• Sampling at 21 days of age: Requirements: castrated boars, 60 samples/batch, one boar per litter, covering all farrowing houses in the batch, marking the corresponding farrowing house number and pen number, and marking the sampled piglets for the production of disease material.

Phase II: The Introduction Process

Purpose:

• Preventing exogenous pathogens from entering the herd at the transfer stage

- Transfer pigs early in the morning and avoid transfer during the rainy season. Try to separate piglets produced by gilts and sows in transfer process from the farrowing houses at breeding farms to nursery houses at introduced farms
- After cleaning, disinfection and drying, third-party pig transfer trucks should be tested for ASF, PEDV, and PRRS antigens (This can be tested locally)
- On transfer trucks' arrival at breeding farms, use 1:50 Virkon to disinfect the trucks' tire tailgate with low-pressure spray, and wait *Science-drive* for 5-10 minutes after disinfection.
 - On transfer trucks' arrival at introduced farms, samples from tires are collected before disinfection and tested for PRRS, ASF and PEDV. (This can be tested locally)
 - Piglets produced by gilts and sows should be transferred seperatly.
Phase III: After Introduction - Before Artificial Infection

Purpose:

- Slow down PRRS infection in nursery pigs and reduce PRRSv-induced secondary infections in herds through strict internal biosecurity and production management.
- Track herd infection status and prevalent strains through regular surveillance

3.1 Production Management

- Piglets born from gilts and sows of the same batch should be raised in separate buildings
- Different batches cannot be mixed and housed together
- No sharing of personnel and materials between pig houses and batches if not necessary
 - If necessary, operate sow houses before gilt houses
- 3.2 Pharmaceutical health care
 - Day 1 of arrival at new farms: offspring of gilts should be injected with 1 dose of macrolide antibiotics. Other pigs can be injected as needed
- Pulse feeding/water medication: florfenicol + tylvalosin +
 doxycycline. After stopping the medication for one week, add
 Science-driven solutions
 for another week.
 - Adjust medication according to clinical symptoms
 - 3.3 Monitoring

٠

- Sampling type: saliva sampling, (≤ 15 pigs/cotton rope)
- Number of samples: collected from the whole herd
- Monitoring frequency: 2 weeks/times
- Sampling time: about 30 minutes/time

Thanks for the support of Mr. Xia Tian from PIC

Anatomical sampling of 1 batch of sick and weak pigs for identification

Bacterial isolation and antimicrobial susceptibility test

Sample Type	Sample No.	Result	Pathogenicity
novicavdial offusion	Δ 1	Lactobacillus rhamnosus	-
pericarulai enusion	AI	Pseudomonas fluorescens	-
		Bacillus licheniformis	-
		Bacillus subtilis	-
		Rothia nasimurium	-
		Kurthia gibsonii	
pericardial effusion	A2	Enterococcus faecalis	
		Aerococcus viridans	
		Corynebacterium stationis	今使用时
		Staphylococcus epidermidis	
		Kocuria	
joint exudate	B1	Kocuria Scie	nce-driv e n solutio
joint exudate	B2	Streptococcus suis	pathogenic
plasma	C1	Streptococcus suis	pathogenic
plasma	C2	Rothia nasimurium	-
fibrous exudate	D1	NA	NA
		Aerococcus viridans	-
fibrous ovudate	D2	Bacillus licheniformis	-
norous exuale	D2	Vagococcus fluvialis	-
		Corynebacterium stationis	-
4:0000	E1	NIA	NIA

Three samples were collected:

- Pericardial effusion, joint exudate, blood
- Fibrous exudate swab
- lesion tissue

- Identification of bacterial isolates:
 [®] Streptococcus suis & Haemophilus parasuis
- The antimicrobial susceptibility test showed that β-lactam antibiotics were more sensitive to the above two bacteria.

Acknowledgments: Support from Boehringer Ingelheim HMC

Batch 1: 0/21 detected at 3 weeks of age, 21/21 detected at 11 weeks of age

Batche 2: 3/14 detected at 3 weeks of age, 14/14 detected at 7 weeks of age

Average space and medication cost

		No. of weaned	Death and		Medication cost	
Batch	weaning date	piglets(head)	culling rate	Space(m ²)	per nead	WUA
1	8.17	901	6.1%	0.31	9.8 yuan	13
2	9.7	884	4.2%	0.27	6.5 yuan	10
3	9.28	795	2.8%	0.3	6.5 yuan	7

MLV immunized group: Death registration form for nursery batches at breeding farms

MLV non-immunized group: Death registration form for nursery batches on introduced farms

		No. of weaned	Death and	11	Medication cost	
Batch	Weaning date	piglets(head)	culling rate	Space(m ²)	per head	WOA
		Scienc	e-ariven solut	ions		
1	8.17	569	10.7%	0.4	20.7 yuan	13
2	9.7	489	8.6%	0.47	16.9 yuan	10
3	9.28	405	3.2%	0.38	8.0 yuan	7

Notes:

Introduced farms are new farms, stocking density is much smaller than the breeding farms, treatment cost vary by 2-3 times Selected pigs from the first batch of introduced breeding pigs to make pathogenic material

Summary

- Targeted control of the proportion of piglets introduced into the batch that are infected early can delay the infection time of whole herd.
- Positive piglets in non-immunized group have higher death and culling rate and medication costs than immunized group.

Juncture 2: Whole herd artificial infection

Purpose: to unify infection state, reduce susceptible animals, and make the eradication schedule clearer 1. Assessment of the eradication capacity of introduced farms

2. Selection of breeding pig supply farms and batches 8. Reducing death and culling rate in PRRSv positive 4. Parameterization of human-initiated infections 5. Infection-eradication PRRSv Infection Kinetics & Science-driven solutions

Surveillance Programs

- 6. Biosafety optimization
- 7. Evaluation of eradication

Current situation: Due to genetic improvement, a number of naïve boars and sows need to be introduced urgently.

animals, unify herd immunity, reduce time from infection to eradication

Issues to be addressed

- Sources of acclimation material
- Selection of acclimation material?
 - Serum? (Dilution times? Add antibiotics or not? What antibiotics and what is the dose?) Tissue? (Preparation process?)
 - Contact transmission/high frequency mixing? (Preassessment of whether infected, 3:10 ratio of infections, post-assessment of infections)
- Objective: minimize the number of susceptible Science-drive3. Selection of strains (4-5% nucleotide variation in strains from the same farm)
 - Choice of infection mode
 - Selection of infectious dose

Finding the Right Pathogenic Material

Step 1: Primary screening of saliva fluid to screen pens with low CT values

No.	Sample No.	PRRSV-Ag (CTvalue)	Туре
1	R1 1	36.88	2 batches of
	DI-I	50.00	saliva
2	R1_3	31.92	2 batches of
	D1-5	51.72	saliva
3	B1-24	-	3 batches of
5	D1-24		saliva
Δ	B1-26	36.45	3 batches of
_ _	D1-20	50.45	saliva
5	B5-1	32.68	saliva
6	B5-3	-	saliva
7	B5-5	37.12	saliva
8	B5-7	-	saliva
9	B5-9	37.18	saliva
10	B5-11	33.91	saliva
11	B5-13	35.91	saliva
12	B5-14	-	saliva
13	B5-16	-	saliva
14	B5-18	34.06	saliva
15	B5-20	37.84	saliva
16	B5-22	40.82	saliva
17	B5-24	37.68	saliva

Step 2: Detecting viremia in pigs in the pen on a case-by-case basis

金盛1	8. 17.)	FAM		金盛31	22.95	FAM
金盛2	33.98	FAM		金盛32	19.7	FAM
金盛3	27.44	FAM		金盛33	_	FAM
金盛4	3.553	FAM		金盛34	18.94	FAM
金盛5	19.93	FAM		金盛35	23.94	FAM
金盛6	25.66	FAM		金盛36	24.53	FAM
金盛7	23.29	FAM		金盛37	25.29	FAM
金盛8	-	FAM	FIT	金盛38	19.2	FAM
金盛9	27.15	FAM	1	金盛39	18.36	FAM
金盛10	29.66	FAM	Long La	金盛40、	2/ -//	FAM
金盛11	34.28	FAM	H.	金盛41	31.61	FAM
金盛12	29,48	FAM	思日	金盛42	22.51	FAM
金盛13 🔪	28.44	FAM		金盛43	22.84	FAM
金盛14	//-/	FAM		金盛44	24.01	FAM
金盛15	24.4	FAM		金盛45	20.28	FAM
金盛16	-	FAM		金盛46	- 0	FAM
金盛17	Scaen	FAM	driven	金盛471	23, 15	FAM
金盛18	29.72	FAM		金盛48	()	FAM
金盛19	23.81	FAM		金盛49	31.87	FAM
金盛20	3553	FAM		金盛50		FAM
金盛21	8.00	FAM		金盛51	21.71	FAM
金盛22	27.16	FAM		金盛52	27.23	FAM
金盛23	26.57	FAM		金盛53	21.32	FAM
金盛24	1	FAM		金盛54	23.25	FAM
金盛25	26.88	FAM		金盛55	23.29	FAM
金盛26	33.59	FAM		金盛56	27.03	FAM
金盛27	22	FAM		金盛57	33.71	FAM
金盛28	23.57	FAM		金盛58	-	FAM
金盛29	27.18	FAM		金盛59	30.91	FAM
金盛30	30.39	FAM		金盛60	37.6	FAM

Step 3: Screening of culled pigs

1.4	a Date	in the second	1000 C
	D B5-148087	(D) B5-1 49055	NE
	Q B5-1 49350	B 85-1 28775	All Com
	3 135-1 49352	EA 135-1 49078	AN Com
	3 B5-1 Y8885	B-15-11 D9154	HALLEN
	B 35-1- 14170	20 85-11- 19156	Have by
	@ p5-1 49185	05-11: ×9172	the filling
	D B51 19092	· 28 135-11 L8899	A Call
	B B5-1 L9135	29 85-11 49101	
2	9 B5-1 Y8993	3 135-11 D9157	1.46
	1351 Y9190	-3) BS+1 49274	AR
	D-135-1 18827	(3) 135-11 18887	Capit
	12 B54 Y6805	3 135-11 49124	N Kale
	BB54 Y8943	39 35-11 28884	4
1	BB51 - Y8746	(J) 15-11 178153	C. C.g.
	(5) BFH Y 8761	30 B5-11 19184	160
	QB5+ Y9071	(37) B5-11 44109	1 and
	D B5-1 48014	38 35-11 1.8909	
	B 135-1 , Y 9047	(34) 35-11. 28407	100
	(9) B5-1 Y9126	(IS-1 L8970	the file
-	23B5-1 +9144	(H) B5-11 L8400	
	20 BST Y8981	(B) 15-11 Y9123	
-	1	y	

Selection of acclimation strains: the two most distantly related strains

were selected as acclimation strains.

ORF7-based

ORF5-based sequencing

13 98.0 1 2 97.0 98.0 3 4 98.0 97.0 5 96.0 6 7 97.0 95.0 8 97.0 9 96.0 10 96.0 11 97.0 12 13 13

41-ORF5
9-15SanguB6-2-ORF5
9-15SanguB6-3-ORF5
9-15SanguB6-4-ORF5
9-15SanguB7-13-ORF5
9-15SanguB7-14-ORF5
9-15SanguB7-16-ORF5
9-15SanguB7-26-ORF5
9-15SanguY8312-ORF5
9-15SanguY8640-ORF5
9-2SanguB31-35-ORF5
9-15SanguY8655-ORF5
B50-ORF5

Lot 1: 2 ORF5s Lot 2: 5 ORF5s Lot 3: 1 ORF7 Theoretical Basis of Infection Route and Dose

Neutralizing antibodies were higher for nasal immunization than for intramuscular

injection in naïve pigs infected for the first time

Immunization dose 4.8 Log¹⁰ TCID₅₀

Tip: Newly introduced naïve pigs are better infected by nose dropping from the point of view of effectiveness

- 1. Opriessnig T, Rawal G, McKeen L, Filippsen Favaro P, Halbur PG, Gauger PC. Evaluation of the intranasal route for porcine reproductive and respiratory disease modified-live virus vaccination. Vaccine. 2021 Nov 16;39(47):6852–6859. doi: 10.1016/j.vaccine.2021.10.033. Epub 2021 Oct 24. PMID. 34706840.
- LI Wen, MA Sixu, LI Xiangtong, SUN Yangyang, WEI Fengling, XU Ruiqin, YANG Guoyu, XIA Ping, ZHANG Gaiping, The Variance Analysis of Viremia and Antibody in Piglets Vaccinated against PRRSV VR2332 Attenuated Strain via Nasal Drip and Injection. <u>2019</u>, <u>Vol. 50 Issue (2)</u>: 373–381. DOI: 10.11843/j.issn.0366– 6964.2019.02.015

Theoretical Basis of Infection Route and Dose

For infected pigs, the intramuscular dosage of the second immunization should follow

the principle of small doses.

TABLE 3. PR	Incidence of PRF RSV challenge and	RSV genomic copies d days 7 and 14 post	in serum on day of inoculation	Tip:
Group	Incidence (no. of PRRSV-positive pigs/total no. of pigs in group [group mean of log-transformed data \pm SE]) on postinoculation day ^a :			1. In the case of uninfected herds, small doses of intramuscular injection is insufficient to elicit a strong immune response:
	0	7	14	that's why infected pigs have to be acclimated again.
L-VAC H-VAC	$0/10 (0.0 \pm 0.0)$ $0/10 (0.0 \pm 0.0)$	$2/10 (0.6 \pm 0.5)^*$ $0/10 (0.0 \pm 0.0)^*$	$0/10 (0.0 \pm 0.0)^{*}$ $0/10 (0.0 \pm 0.0)^{*}$	2. In infected pigs, the protection against reinfection is not
SDSU73- L-VAC	$1/10(0.2 \pm 0.2)$	$1/10(0.3 \pm 0.3)^{*}$	$0/10(0.0\pm0.0)*$	dose-dependent.
SDSU73- H-VAC	$0/10 (0.0 \pm 0.0)$	$0/10 \ (0.00 \pm 0.0)^*$	0/10 (0.0 ± 0.0)*	ven solutions [®]
Control	$0/10 (0.0 \pm 0.0)$	$8/10(3.9\pm0.7)^{**}$	$8/10(2.0\pm0.5)^{**}$	

^{*a*} Different symbols (* and **) within a column indicate significant (P < 0.001) differences in group mean values and incidences.

Compared to the control group and the low vaccine dose group, the high vaccine dose (IM) group, the low dose challenged group, and the high dose challenged group had mild clinical symptoms and significantly lower viremia (2.0 TCID₅₀ in the low dose group and 5.0 TCID₅₀ in the high dose group), all of which were administered intramuscularly.

Opriessnig T, Baker RB, Halbur PG. Use of an experimental model to test the efficacy of planned exposure to live porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol. 2007 Dec;14(12):1572-7. doi: 10.1128/CVI.00332-07. Epub 2007 Oct 10. PMID: 17928430; PMCID: PMC2168385. Theoretical Basis of Infection Route and Dose

Oral route of exposure: 10^{5.3} TCID₅₀(95% CI, 10^{4.6} and 10^{5.9}) Intranasal route of exposure: $10^{4.0}$ TCID₅₀ (95% CI, $10^{3.0}$ and $10^{5.0}$)

Hermann JR, Muñoz-Zanzi CA, Roof MB, Burkhart K, Zimmerman JJ. Probability of porcine reproductive and respiratory syndrome (PRRS) virus infection as a function of exposure route and dose. Vet Microbiol. 2005 Sep 30;110(1-2):7-16. doi: 10.1016/j.vetmic.2005.06.012. PMID: 16098692.

Preparation of acclimation materials

- naïve herds: nasal spray, use lung tissue homogenate filtrate, infection dose $3.25-4.25 \text{ Log}^{10} \text{ TCID}_{50}$
- Positive herds: intramuscular injection, using serum dilutions, infection dose approx. 2 Log¹⁰ TCID₅₀
- Naïve pig herds: pilot experiment using 10% small groups

Preparation of acclimation materials¹ (Preparation of diluent and acclimation materials)

- 1. Diluent preparation: 250 ml sterile saline + 1g ceftiofur as diluent; saline is kept refrigerated (4°C) in advance.
- 2. Lung milling fluid acclimation material preparation: the whole preparation process was carried out in 4 °C.
- 3. B50 lungs were weighed, divided into small pieces and added to the 4 °C diluent at 2 ml/g; together they were placed in a tissue homogenizer, stirred well, and filtered through three layers of sterilized gauze, and then filtered through filter paper (solution cups) and placed on ice for later use.
- 4. Serum was diluted at a ratio of 1:100 with 4 °C diluent for later use tions ®
- 5. Required items and tools: 5L of saline (1500 heads * 2ml serum = 3L of saline; 3000ml / 100-fold dilution = 30ml of viremia serum); 20g of ceftiofur powder; 100ml measuring cylinder; sterile scalpel and scissors, tissue homogenizer, weighing scale (for weighing lung tissues), sterile gauze, 100 centrifuge tubes of 50ml, equipment for sterilization (e.g., pot and stove for boiling and disinfection), ice box and ice
- 6. 2 acclimation materials, prepared in the morning, used in the morning, stored at 4 °C throughout the process

^{1.} Opriessnig T, Baker RB, Halbur PG. Use of an experimental model to test the efficacy of planned exposure to live porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol. 2007 Dec;14(12):1572-7. doi: 10.1128/CVI.00332-07. Epub 2007 Oct 10. PMID: 17928430; PMCID: PMC2168385.

Pre-testing of pathogenic material treatment

Pathogenic material preparation for gilt acclimation

Health programs during the acclimation period

1. Infected herds (batch 1, 2 and 3 pigs)

- Drinking water health program: amoxicillin + tilmicosin + multivitamins; amoxicillin dosed according to body weight (kg): 10mg effective content of compound amoxicillin/kg body weight + 30% of wasted drinking water.
- Injectable therapy: antimicrobial susceptibility tests recommend using long-acting ceftiofur.
- Have epinephrine on hand if pigs have stress reaction
- 2. Newly introduced naïve pigs were infected twice
 - Injection of macrolide antibiotics on the same day after acclimation with wild virus
 - Health care for the whole herd on the day of infection using amoxicillin, multivitamins, sulfa and antipyretics in drinking water for 5-7 days
 - Symptomatic treatment to pigs with obvious clinical symptoms, early detection and early treatment, antimicrobial susceptibility tests recommend the use of long-acting four-generation ceftiofur
 - Have epinephrine on hand if pigs have stress reaction

Death and culling rate within 4 weeks of acclimation: (13+4)/1533=1.1%

Batch	Week of age of acclimation	Number of dead + culled pigs/pigs in stock within 4 weeks of infection
batch 1	16	(6+0)/569
batch 2	13李曼中国	(6+2)/489
batch 3	10 Science-driven solut	(1+0)/405
Introduction of naïve pigs	24	(0+2)/70

Stage 3: Herd eradication period

Purpose: To track the progress of eradication and

intervene and control in a timely manner

 Assessment of the eradication capacity of introduced farms
 Selection of breeding pig supply farms and batches
 Repring death and culling rate in PRRSv

& Surveillance Programs

Science-driven 5.0/Infection-eradication PRRSv Infection Kinetics

- 6. Biosafety optimization
- 7. Evaluation of eradication

Monitoring program:

Purpose: 1. to determine whether infection was successful; 2. infection

rate; 3. whether shedding was stopped

Reinfection of the herd

- 1. Determine if infection is successful: do nnucleic acid test 1 week post-infection by collecting whole herd saliva
- 2. Determination of infection rate: do antibody test 3 to 8 weeks post-infection by selecting 4 pens of pigs per batch weekly
- 3. Determine if the herd is no longer infectious: do nucleic acid test every two weeks after infection by collecting whole herd saliva

Naïve pig herd

Science-driven solutions[®]

- 1. Determine if infection is successful: do nucleic acid test within 7 days of infection by collecting blood from the whole herd
- 2. Determination of infection rate: do antibody test 3 weeks post-infection by collecting blood from the whole herd
- 3. Determine if the herd is no longer shedding: do nucleic acid test every two weeks after infection by collecting whole herd saliva

Confirmation of infection success: PRRSv nucleic acid turns positive

on day 4 of naïve pig after nasal infection

孔号	样品名	靶名	类型	染料	Ct	结果
A1	1. Y146707	PRRS北美型	UNK	FAM	18.53	阳性
A1	1. Y146707	PRRS欧洲型	UNK	VIC	0.00	阳性
A2	2. Y143503	PRRS北美型	UNK	FAM	17.74	阳性
A2	2. Y143503	PRRS欧洲型	UNK	VIC	0.00	阳性
A3	3. L141202	PRRS北美型	UNK	FAM	18. 93	阳性
A3	3. L141202	PRRS欧洲型	UNK	VIC	0.00	阳性
A4	4. Y147106	PRRS北美型	UNK	FAM	16.78	阳性
A4	4. Y147106	PRRS欧洲型dri	NENK S	svalutic	ons 9 .00	阳性
A5	5. L142306	PRRS北美型	UNK	FAM	19.23	阳性
A5	5. L142306	PRRS欧洲型	UNK	VIC	0.00	阳性
A6	6. L1535047	PRRS北美型	UNK	FAM	16.72	阳性
A6	6. L1535047	PRRS欧洲型	UNK	VIC	0.00	阳性
A7	7. D149506	PRRS北美型	UNK	FAM	16.95	阳性
A7	7.D149506	PRRS欧洲型	UNK	VIC	0.00	阳性

Determination of infection rate: 64/64 positive conversion rate of antibody three weeks after infection in pigs

No	S/P	European	American	No	S/P value	European	American	No	S/P	European	American
110.	value	genotype	genotype	INU.	5/1 value	genotype	genotype	110.	value	genotype	genotype
								B43	1.337	-	39.02
B1	1.635	-	-	B22*	1.42	-	29.96	B44	1.446	-	34.91
B2	1.309	-	31.13	B23	1.147	-	34.55	<mark>B45</mark>	<mark>1.64</mark>	-	-
B3	<mark>1.74</mark>	-	-	<mark>B24</mark>	1.729	-	-	<mark>B46</mark>	<mark>1.48</mark>	-	-
B4	1.507	_	27.12	<mark>B25</mark>	<mark>1.669</mark>	-		B47	1.993	_	30.57
B5	1.656	-	30.27	B26	2.088	-	32.97	B48	1.537	-	32.66
B6*	1.293	-	32.55	B27	0.874		37.41	B49*	1.488	-	31.59
B7	<mark>1.492</mark>	-	-	B28	0.671		36.17	B50*	0.865	-	25.84
B8	1.622	-	36.03	B29	1.105		31.38	B51*	0.437	_ 1	35.2
B9	0.635		29.95	<mark>B30</mark>	1.367			B 52*	0.658	-	28.73
B10	1.949	-	32.12	B31	1.397		26.48	B53*	0.778	-	29.57
B11	1.554	_	36.22	B32	1.572		32.84	B54*	1.574	-	30.06
B12	1.701	_	29.14	B33	1.377	, . -	35.06	B55	1.378		30.09
B13*	1.334	_	31.18	B34C/	0.841	ariven s	28.93	B56	1.673	-	33.66
B14	1.724	-	26.79	<mark>B35</mark>	<mark>0.775</mark>	-	-	B57	1.245	-	36.31
B15	1.692	-	30	<mark>B36</mark>	<mark>1.544</mark>	-	-	B58	1.646	-	31.94
B16	1.873	-	30.27	B37	1.579	-	37.33	B59	1.168	-	35.84
B17	1.417	-	30.81	<mark>B38</mark>	<mark>1.515</mark>	-	-	B60	1.431	-	31.63
B18	1.831	-	32.16	B39	1.166	-	30.05	B61	1.443	-	28.9
B19	1.587	-	32.14	B40	1.859	-	34.92	B62	1.815	-	29.08
B20*	1.401	-	31.51	B41*	1.656	-	35.04	B63	0.635		29.7
B21	1.669	-	33.85	B42*	1.191	-	31.98	B64	1.833	-	33.06

Whether or not the herd stops shedding: batch 1

Six weeks after the second infection, the whole herd is almost no longer shedding

Whether or not the herd stops shedding: batch 2 Six weeks after the second infection, the whole herd is almost no longer shedding

Whether or not the herd stops shedding: batch 3 Eight weeks after the second infection, the whole herd is almost no longer shedding

Juncture 3: Stabilization of herds

 Assessment of the eradication capacity of introduced farms
 Selection of breeding pig supply farms and batches
 Reviewing death and culling rate in PRRSv

Science-driven 59/Unfection-eradication PRRSv Infection Kinetics

& Surveillance Programs

- 6. Biosafety optimization
- 7. Evaluation of eradication

PRRSv nucleic acids became continuously negative on March 8: PRRSv stable state reached

Date/Sample Type	Semen PCR negative ratio	Sow serum PCR negative ratio	Sow serum ELISA negative ratio
March 8 (batch 1)	0/19	0/31	1/31
April 1 (batch 2)	0/29	0/60	17/60
April 25 (batch 3)	0/39	0/60	7/60
May 13 (batch 4)	0/30	0/61	10/61
June 5 (batch 5)	0/34	0/61	12/61
June 26 (batch 6)	0/30	0/62	15/62
July 17 (batch 7)	0/9	0/62	-
August 7	0/12	-	-
August 9	0/8	-	-
August 16	0/9	-	-
September 6	0/14	-	-
September 18	0/8	-	-

PRRSv eradication

Program

Almost all antibodies turned negative on September 18, with less than 1% positive rate

Stage 4: Maintenance of stability/evolutionary period

Preventing the introduction of new strains

 Assessment of the eradication capacity of introduced farms
 Selection of breeding pig supply farms and batches

Science-driven solutions[®] eradication PRRSv Infection Kinetics

& Surveillance Programs

- 6. Biosafety optimization
- 7. Evaluation of eradication

Continuous optimization of biosafety

- 1. Heating temperature monitoring of the material handling room in the front multifunctional area
- 2. Preventing sewage backflow on pig exit platforms for culled pigs
- 3. Reasonable placement and use of the soaking box & carry-on items disposal box
- 4. Optimization of the meal delivery windows from living area to the front multifunctional area
- 5. Optimization of the pickup process in warehouses in the company's controllable area
- 6. Optimizing the shoe changing process in the front multifunctional area
- 7. Employee baggage management optimization
- 8. Marking roads in farm
- Incorporating biosafety reminder labels & standardized and papered biosafety procedures for new employee training

Continuous optimization of external biosecurity

The shelves in the material disinfection channel in the front multifunctional area have been rectified, and the treatment method has been changed from ozone and UV disinfection to heating and soaking.

Continuous optimization of external biosecurity

Anti Backflow Sinks

Increase in the number of soaking buckets and carry-on item sterilizers Reasonable placement and use of the soaking box & carry-on item disposal box

Optimization of meal delivery windows from

living area to the front multifunctional area

Optimize the shoe changing process in the front multifunctional area

Juncture 4: Negative conversion of antibody in 6-week-old piglets

Positioning the eradication process

 Assessment of the eradication capacity of introduced farms
 Selection of breeding pig supply farms and batches

- Science-driven solutions
 - & Surveillance Programs
 - 6. Biosafety optimization
 - 7. Evaluation of eradication

Eradication process and evaluation method

pig

Eradication evaluation: monitoring program

Objective:

- 1. Samples from delivery rooms test negative for PRRSV nucleic acid (<1%)
- 2. Maternal antibodies in 6-7 weeks of nursery herd turn negative (<1%)

Each batch	Sample size	Detection method
Ineffective tongue tip exudate of piglet	20-100 tongues tip/sample, full coverage	PRRSv PCR
Processing fluid of piglet	20-30 litters/sample, whole herd sampling	PRRSv PCR
Blood of weaned piglets at 3-4 weeks of age Scie	240 weak piglet/batch s®	PRRSv PCR&ELISA
Blood of 6-week-old piglets	240 weak piglet/batch	PRRSv PCR&ELISA
Blood of 9-week-old piglets	240 weak piglet/batch	PRRSv PCR&ELISA

All farrowing piglets tested negative for PRRSv nucleic acid

	piglets of batch 1	piglets of batch 2	piglets of batch 3	piglets of batch 4	piglets of batch 5
tongue tip exudate	0/2	0/2	0/2	0/2	0/3
Testicular processing fluid	0/7	0/7		0/7	-
3-4 weeks of age	0/240	Science-dr	iven solutions [®]	-	-
6-7 weeks of age	0/120	0/120	0/120	-	-
9-10 weeks of age	0/120	-	-	-	-

• piglets of batch 1 at 10 weeks of age were all negative for antibodies; piglets of batch 2 at 7 weeks of age were all negative for antibodies

Next Steps

Naïve sentinel pigs were placed in the sow herd, and antibody levels were tested twice consecutively at 30-day

intervals. The herd remained negative and the virus tended to be eliminated.

date of birth	Sentinel pig entry time	heads	Antigen-antibody monitoring status for the first time (0 day)	Second time (30-day- interval)	Third time (60-day interval)	Fourth time (90-day interval)	Fifth time (120-day interval)	Sixth time (150-day interval)
6.1	6.22	65	100% negative for both antigen and antibody	100% negative	100% negative	100% negative	100% negative	100% negative
6.11	7.1	40	100% negative for both antigen and antibody	100% negative	100% negative	100% negative	100% negative	100% negative
7.1	7.22	21	100% negative for both antigen and antibody	100% negative	100% negative	100% negative	100% negative	100% negative
7.12	8.1	61	100% negative for antigen, 86.7%nce negative for antibody (s/p 0.489, 0.559)	-driven solu 100% negative	<i>tions</i> ® 100% negative	100% negative	100% negative	100% negative
7.25	8.14	40	100% negative for both antigen and antibody	100% negative	100% negative	100% negative	100% negative	100% negative
8.10	9.2	35	100% negative for antigen, 94.1% negative for antibody (s/p0.425)	100% negative	100% negative	100% negative	100% negative	100% negative
8.26	9.18	61	100% negative for both antigen and antibody	100% negative	100% negative	100% negative	100% negative	100% negative

(Reference to US AASV 2020 standards)

Conclusion & Discussion

- 1. PRRSv naïve herds are productive, but not all pig farms are suitable for eradication
- 2. Prior to eradication, an assessment of the eradication capacity of the project site should be carried out, including topography, climate and biosafety.
- 3. Should unified infections using vaccines/wild viruses be based on demand, time or economics?
- 4. If it is not possible to introduce directly from naïve farms to repopulate herds, try to choose breeding farms with low diversity of PRRSv strains, and preferably with low PRRSv infection rate in multiparous sows/weaned piglets.
- 5. Rash acclimation with wild virus may cause abortion in sows and steep increase in piglet mortality. Before acclimation, it is necessary to consider the virulence of the wild virus, the age of the herd at the time of infection, the route of infection and the dose of infection, to ensure the establishment of a solid protection while reducing losses.
- Continuous herd monitoring allows the entire acclimation process to become traceable, visualized and intervened. For example, is there an actual infection? Percentage of infection? Whether they are no longer shedding, etc.
- 7. Establishing a virus eliminated herd is easier to achieve than maintaining eradication.

Acknowledgement

- The support and cooperation of all the staff of Fujian Kuiqiang Pig Breeding Co.
- Project support from Boehringer Ingelheim staff including Pinquan Chen, Yulong Hu, Haozhou Hong, Xiaosheng Chen, Jianlong Zhang, Ruihua Wu
- Testing support from Boehringer Ingelheim HMC and Institute of Animal Health, Guangdong Academy of Agricultural Sciences
- Biosafety Audit by Tian Xia from PIC driven solutions®
- Virus identification support from Shandong Agricultural University
- Thank you to the entire staff of the Leman Swine Conference

Ranking in no particular order.