

Application Practice of Precision Nutrition Technology in Multi-storey Pig Farming Pattern

ScierKuanmin Yangons®

PhD/Nutritional Director

Guangdong Kingkey Smart

Agriculture Times Co., Ltd.

October 20, 2023

CONTENTS

 An Introduction to 6750 Multi-storey Pig Farming Pattern
 Sharing of Application Practice of Precision Nutrition Technology The Orientation of Precise Nutrition System Construction

.

An Introduction to 6750 Multi-storey Pig Farming Pattern

Achievement of 6750 Multi-storey Pig Farming Pattern

Laying the foundation for the company to quickly achieve full production potential, improve production efficiency and reduce breeding costs.

Achieve full production potential and continue to reduce cost

Company	Cost	Remarks (2023)
Muyuan Foods Co., Ltd.	14.73	September
Kingkey Smart Agr	15.8	August
New Hope	16.3	July
TECON	16.5	Year-end target
Shennong Group	16.6	June
Wens Foodstuff Group	16.8	April
Kingsino Technology Co.,Ltd.	16.93	July
Dongrui Foods	17.8	August
Dabeinong Technology Group	18.76	Quarter 1
Tech-bank Food Co., Ltd.	19-20	Quarter 1

Breeding system of 6750 pattern

Production process

	Breeding (6750)		Finishing (72000)							
	The 1st building	The 2nd building		The 1st building	The 2nd building	The 3rd building	The 4th building	The 5th building	The 6th building	
The 5th floor	1500 farrowing room 5	1500 gestation 3								
The 4th floor	1500 farrowing barn 5	1500 gestation 3	The 4th floor	3000	3000	3000	3000	3000	3000	
The 3rd floor	1500 farrowing barn 5	Science- 1500 gestation 3	The 3rd floor	3000	3000	3000	3000	3000	3000	
The 2nd floor	1500 farrowing barn 5	1500 gestation 3	The 2nd floor	3000	3000	3000	3000	3000	3000	
The 1st floor	750 farrowing barn 2+nursery 2+finishing 1	750 finishing 3+gestation 2	The 1st floor	3000	3000	3000	3000	3000	3000	

	grandparent 750 area/parent 1500 area
	4-week batch
Breeding cycle	20W (140 days)
Days of lactation	21 days
Number of batches	5
Days of using the farrowing unit	4W
Number of batches in farrowing barn	
Number of batches in gestation barn	4

Types of batches	Interval Interval Moving t between between farrowin batches breeding bed earlie		Moving to farrowing bed earlier	Farrowing Age of time lactation		Wash Emp ing pen	ty Weaning batches /year	Number of batches of pig herds on the farm	Pigs in nusery and finishing barns	Washing empty pens
4-week batch	28 days	3-5 days	3	2	21	2	13	5	161	7

Advantages:

v Closed herd production: self-renewal of breeding pigs to reduce biosafety risks

v All-in all-out: All-in all-out of the whole building (12000 pigs/batch) v 4-week batch production organisation: improve the health of pigs, save manpower, improve efficiency and reduce cost

Management stress:

- Generative serves
 Science-driven solutions[®]
 High production management intensity and requirements;
- High requirement of nutrition matching: the feeding days are only 161 days, and the daily gain needs to be more than 700 g.
- Huge environmental pressure: intensive, highly efficient with low emissions.

Low Cost, Low Emission, High Efficiency -- Precision Nutrition

Technology System

 $\bullet \bullet \bullet \bullet \bullet \bullet$

2 Sharing of Application Practice of Precision Nutrition Technology

Precision Nutrition Technology System

蒋宗勇, 广东农科院

The Necessity of Implementing Precision Nutrition --Determination of Precision Nutrition for Nursery & Finishing Pigs KINGKEY SMART AGRI

1) Nutritional standard: whether to meet the nutritional requirements of different strains under the 6750 pattern;

2) Feed budget: whether the nutrient supply meets the growth potential of different breeds under the 6750 model;

3) Cost optimization: whether there is room for further optimization of the cost of feed for meat production;

4) After-sales market: market feedback on carcass performance and pork quality needs data support.

★ Purpose: Explore the growth potential of PIC and French pigs under the 6750 multistorey breeding pattern?

兄 基 智

Determination of feed intake and weight-formulation of nutrition supply plan-feed nutrition standard-

feeding budget

★ Targets:

- 1. The growing pattern of PIC and French pig breeds under 6750 pattern;
- 2. Revise the nutrition standards of PIC and French pig breeds under 6750 pattern;
- 3、Revise the feed budget standards of PIC and French pig breeds under 6750 pattern;
- 4、Reduce FCR by 0.1 and the feed-to-meat cost 30 yuan/pig;

Project implementation route

Design and methods

Measurement Results-Growth Performance

\succ Results c	of different phases &	Cumulat	tive ResultsPIC p	ngs			
Age/day	Feeding phase	Days of feeding	Phased feed intake (kg)	Weight gain (kg)	Daily feed intake (kg/day)	Daily weight gain (g/day)	FCR
21-35	6.6-8.5	14	2.54	1.87	0.181	134	1.36
36- 54	8.5-15.9	19	9.63	7.40	0.507	390	1.30
55- 70	15.9-28.1	16	18.33	11.08	1.146	692	1.65
71- 91	28.1-48.2	21	36.32	20.13	1.729	959	1.80
92-112	48.2-68.7	21	47.63	20.43	2.268	973	2.33
113- 133	68.7-84.0	21	46.92	15.32	2.234	730	3.06
134- 154	84.0-108.8	21	74.85	24.83	3.56	1183	3.01
155- 182	108.8-138.6	28	109.40	29.87	3.91	1067	3.66
21- 182	Actual measurement	161	345.61	130.94	2.15	813	2.64
21- 174	Estimation	153	275.50	108.50 108.50	1.80	709	2.54
21- 174	Actual measurement (corrected)	153	311.2	123.0	2.03	804	2.53
100kg weight	Actual measurement	-	-	-	-	-	2.33
gain	Estimation	-	-	-	-	-	2.46

1. Compared with the estimated results, the daily feed intake increased by 230 g /day and the daily weight gain increased by 95 /day;

2. The FCR of the actual measured weight gain of 100 kg is lower than the estimation by 0.13;

Comparison of pig enterprises

Growth performance result of French pig breeds

Age phase	Weight phase	Average feeding days	Phased feed intake (kg)	Phased Weight gain (kg)	Average Daily Intake (kg/day)	Average Daily Gain (g/day)	Feed Conversion Ratio
23-37	7.0-10.2	14	2.74	3.15	0.2	225	0.87
38-51	10.2-17.1	14	8.84	6.93	0.63	495	1.28
52-71	17.1-31.4	20	21.55	14.31	1.1	728	1.51
72-91	31.4-48.9	20	36.85	17.46	1.81	859	2.11
92-112	48.9-65.9	21	48.59	17.03	2.31	811	2.85
113-133	65.9-83.2	21	54.15	17.22	2.58	820	3.14
134-154	83.2-101.2	21	58.58	18.09	2.79	861	3.24
155-179	101.2-119.2	25	70.03	17.9	2.8	716	3.91
Culmulative	Actual measurement	156	301.3	112.1	1.93	719	2.69
calculations	budget	153	294.5	108.5	1.92	709	2.71
Corrected to 100 kg	Actual measurement			100			2.57
weight gain	budget		and	100			2.63

Science-driven solutions`

Compared with the budget standard, the feeding days and the average daily feed intake were close, and the measured average daily gain in Xuwen farm was increased by 1.41%;

Corrected to the FCR of 100 kg weight gain, and the actual measurement was 0.06 lower than the budget;

Benchmarking data of Industry and French pig breeds

> The curve trends of feed intake, feed conversion ratio and body protein deposition rate of Xuwen Farm were basically consistent with the data of the same industry.

> At the phase of 45-60 kg weight (95 days old), the average daily gain curve of Xuwen farm began to deviate from the same line curve.

Combined with the budget comparison data, the measured daily gain of French pig breeds in Xuwen Farm can be increased by 10% -20% without the influence of stress on the health of pigs.

Comparison between French pig breeds and PIC

- After entering the growing and finishing stage, the daily gain of French pig breeds began to be significantly lower than that of PIC pigs, and the greater the weight, the greater the gap.
- The deposition of fat-free lean meat and body protein in French pig breeds and PIC pigs were completely different, and the deposition of PIC pigs was significantly higher than that in French pigs after 60 kg.
- > At present, a set of nutritional standards and feeding procedures can not fully cover the nutritional needs of multiple breeds.

	Barrow	Gilt	P Value	Comparison of weight and FCR between barrows and gilts at different phases
Initial Weight/kg	6.68 ± 0.38	6.67±0.35	0.65	140.0 3.15 3.15 3.71 3.5 120.0 3 3 3
Final Weight /kg	140.97±12.14**	136.41±12.67	0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Daily Feed Intake/kg	2.15 ± 0.06	2.15 ± 0.06	0.92	$\begin{array}{c} 1.01 \\ 60.0 \\ 1.20 \\ 1.17 \\ 1.67 \\ 1.75 \\ 1.$
Daily Gain g	834±74.8 **	806±78.4	0.00	20.0 0.5
Feed Conversion Ratio (FCR)	2.59±0.24 **	2.69±0.26	Sci0:00ce-dr	21 22-35 36-54 55-70 71-91 92-112 113-133 134-154 155-182 ivensolutions [®] 國公 小母

1. Compared with gilts, barrows were significantly better in terms of slaughter weight, ADG and FCR (slaughter weight is higher by 4.6 kg, ADG is higher by 28 g/day, FCR is lower by 0.1);

2. After 90 days of age, barrows were heavier than gilts at all phases, and the gap in FCR increased;

Different genders - French Pig Breeds

- At the age of 179 days, the average daily gain and FCR of barrows were significantly better than those of sows (P < 0.05), and the average weight for slaughter was 4.8% higher than that of sows.
- There was no significant difference in weight gain between barrows and sows in the nursery stage (23-71 days of age), and the barrows had a significant advantage in growth speed in the growing-finishing stage (72-179 days of age).

> Contrast of different position--PIC

			Near Fai	15	Middle	Pens	N Cooli	Near Cooling pads		Value	Comparison of weight of different phases and FCR in different positions 3.13 2.98 3.67
Initial W	ial Weight (kg) 6.70 ± 0.32 6.67 ± 0.31 6.65 ± 0.45 0.68		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Final We	eight (kg)) 13	8.97 ± 12	.25*	135.47±	11.80	141.54	4±13.05	;*	0.01	$\begin{array}{c} 0.0 \\ - \\ 1.20 \\ 1.16 \\ 1.66 \\ 1.82 \\ 2.88 \\ 1.82 \\ 1.82 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
Daily Fee	ed Intake/k	ag 2	$.15 \pm 0.05$	5**	2.09±	0.01	2.20	±0.05**	•	0.00	$\frac{1}{2} \frac{1}{2} \frac{1}$
Daily We	ight Gain	g	822 ± 75.0	6*	$800\pm$	72.9	838=	±80.5 **	FI	0.01	fans middle pens cooling pads —— 风机 —— 中间 —— 水帘
Feed Con Ratio	version		2.63 ± 0.2	25	2.64±	0.24	2.65	5 ± 0.26		0.84	21-192 dava of aro-woight
Age/day	21	35	54	54	70	91	112	133	154	182	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
n /pig	600	598	580	360	359	358	357. Scie	356 nce-o	.351 riven	348. Solutio	140.00 120.00 100.00
Weight/ kg	6.63	8.5	15.92	17.01	28.1	48.21	68.66	83.98	108.81	138.69	80.00 60.00 40.00 60.00
SD	0.33	0.85	2.33	1.77	3.12	5.03	6.76	9.55	10.97	12.58	20.00 0.00 0 20 40 60 80 100 120 140 160 180 200

1. The growth rate of pigs near the cooling pads and fans was better than that in the middle pens, showing individual differences;;

2. Compared with the measured results of the growth curve of Gaozhou Farm, the difference between 21-50 days of age is not large, but with the increase of weight, the individual difference increases, and the uniformity becomes worse—selling pigs in batches

- The growth rate of pigs near the cooling pads and fans was significantly higher than that of the middle pens in the pig building;
- The data of wind speed and temperature in different regions were subsequently measured to establish the correlation analysis with the growth rate of pigs.

	French pig breeds	PIC-1050	PIC-C48	P Value
dressing percentage/%	83.00 ± 1.41	82.81 ± 1.79	83.64 ± 3.85	0.086
Lean meat percentage /%	57.3±2.93 ^b	61.92 ± 1.46^{a}	61.1 ± 2.15^{a}	0.000
fat percentage/%	19.39 ± 4.32^{a}	$15.32 \pm 0.79^{\text{b}}$	16.44±2.11 ^b	0.010
skin percentage/%	6.46 ± 0.82^{b}	7.52 ± 1.03^{a}	7.38 ± 1.25^{a}	0.019
bone percentage /%	16.84 ± 1.52^{a}	15.24±0.76 ^b	15.08 ± 0.87^{b}	0.001

Lean meat percentage and skin percentage of French pig breeds were significantly lower than those of PIC pigs, fat percentage and bone percentage of French pig breeds were significantly higher than those of PIC pigs, and fat deposition rate of French pig breeds was significantly higher than that of PIC pigs.

	French pig breeds	PIC-1050	PIC-C48	P Value
pH-1h	6.28 ± 0.22	6.24 ± 0.27	6.27 ± 0.26	0.845
pH-24h	5.58 ± 0.1^{b}	5.61 ± 0.14^{ab}	5.66 ± 0.14^{a}	0.003
NPB neat color	3.10 ± 0.53^{b}	3.81 ± 0.62^{a}	3.65 ± 0.73^{a}	0.000
brightness	47.28 ± 2.22^{a}	42.85±3.15 ^b	$43.05 \pm 2.60^{\text{b}}$	0.000
redness	6.47 ± 0.92^{a}	6.22±1.19 ^{ab}	5.91 ± 1.09^{b}	0.014
yellowness	1.83 ± 0.83^{b}	2.78 ± 1.27^{a}	2.86 ± 1.21^{a}	0.000
drip loss	4.25 ± 0.64	4.53 ± 1.40	4.22±1.21	0.417
cooking loss	19.23±2.54 ^b	21.05±5.07 ^a	19.12±3.73 ^b	0.046
shear force	68.67±14.92	70.53 ± 14.78	67.18±13.51	0.577
marbling	1.17±0.48 ^b Scie	$1.52\pm0.53^{\circ}$	1.43 ± 0.52^{a}	0.001

The pH value, brightness and redness in 24 hours of French pig breeds pork were significantly better than those of PIC pigs, and the cooking loss was significantly lower than that of PIC-1050 breeds pigs. French pig breeds had better meat color and water holding capacity. However, the marbling score of French pigs was significantly lower than that of PIC pigs, the intermuscular fat content was significantly lower, and the tenderness decreased.

> Technical value

- 1. Determine the weight gain and feed intake data of PIC and French pig breeds, and reduce FCR;
- 2. Calculate the nutritional requirements of PIC and French pig breeds under the 6750 pattern and revise the new nutritional standards ;
- 3. Calculate the growth pattern of PIC and French pig breeds under the 6750 pattern and revise the new version of feed budget standards for the nursery and finishing stage;

Economic value

1. Through accurate calculation and revision of nutritional standards and feed budget, the cost of feed-to-meat production can be reduced. The cost reduction for PIC and French pig breeds are 50 and 29 yuan per head, respectively.

> Social value

▶ 1. It has the effect of emission reduction from the source and reduces the pressure on the environmental protection.

Feed No.		207			208				209								
Daily feed intake/kg	2.004	2.045	2.087	2.132	2.314	2.361	2.41	2.461	2.581	2.634	2.689	2.746	2.805	2.862	2.922	2.984	
Daily weight		0.9	46			0.990			0.992					0.960			
Net energy/Kcal	2500	2450	2400	2350	2500	2450	2400	2350	2500	2450	2400	2350	2500	2450	2400	2350	
25	add soybear	n oil and	isoleucine		add isol	leucine											
FCR	2.12	2.16	2.21	2.25	2.34	2.38	2.43	2.49	2.60	2.66	2.71	2.77	2.92	2.98	3.04	3.11	
Feed-to-meat	6.64	6.66	6.70	6.74	7.54	7.56	7.60	7.64	8.23	8.29	8.34	8.41	8.85	8.89	8.94	9.00	

The higher the net energy level of the diet, the higher the unit price of the feed, but the lower the cost of the feed for meat production-the net energy level of 206-209 was set at 2450 kcal/kg.

Emission Reduction Effect

01 First edition

202109-202203

The value assessment at this stage is extensive, and the value of raw materials is assessed by the unit price of protein and energy of corn and soybean meal.

Weak points: Lack of consideration of amino acid levels

02 Second Edition

202203-202305

At this stage, the value assessment of precision raw materials is based on the net energy/amino acids of raw materials and other factors to assess the actual value of raw materials.

Weak points: The formula model is single, and there is still a certain gap with the specific formula usage scenario.

03 Third Edition

202206-202306

In this stage, the raw material value model is based on the specific formula of Brill to calculate the value, and at the same time, corn, soybean meal/bran and amino acids are selected as the calibration.

Weak points: There is no accurate dynamic database in the database, so it is impossible to evaluate the value of raw materials with large differences.

Precision Raw Material Value Model-Fourth Edition

Technology and procurement linkage create value (industry benchmark level)

京基智

股票代码 000048

Position	Pen	Breeding stock	Weigh more than 115	Proportion	Initial weight	Final weight	Cumulative feed intake	Days of feed intake	Weight gain	Daily feed intake	Daily wiehgt gain	FCR
	A2	20	11	55.00%	6.8	123.0	242.87	134	116.16	1812	867	2.10
	A3	20	3	15.00%	6.7	122.8	242.87	134	116.13	1812	867	2.09
Position fans Middle Cooling pad	B2	20	5	25.00%	6.9	121.1	239.89	133	114.20	1804	859	2.10
Talls	B3	20	6	30.00%	6.8	123.4	239.89	133	116.65	1804	877	2.06
	C2	20	6	30.00%	6.6	120.4	229.66	132	113.78	1740	862	2.02
	C3	20	8	40.00%	6.6	120.2	226.89	132	113.62	1719	861	2.00
	A10	20	7	35.00%	6.7	120.7	234.88	134	114.03	1753	851	2.06
	A11	20	4	20.00%	6.7	118.0	234.88	134	111.31	1753	831	2.11
Middle	B10	20	4	20.00%	6.4	118.0	233.58	133	111.58	1756	839	2.10
winduic	B11	20	4	20.00%	6.5	124.3	233.58	133	117.78	1756	886	1.99
	C10	20	4	20.00%	6.5	121.6	225.61	132	115.12	1709	872	1.97
	C11	20	2	10.00%	cie ^{7,0} ce	124.3	225.61	ns ¹³²	117.26	1709	888	1.93
	A20	20	8	40.00%	6.9	121.9	239.62	134	115.03	1788	858	2.09
	A21	20	7	35.00%	6.3	120.4	239.62	134	114.12	1788	852	2.10
Cooling	B20	20	7	35.00%	6.9	121.6	246.69	133	114.68	1855	862	2.16
Cooling pad	B21	20	14	70.00%	6.7	120.6	246.69	133	113.90	1855	856	2.17
	C20	20	7	35.00%	6.6	119.8	235.97	132	113.17	1788	857	2.09
	C21	20	3	15.00%	6.7	117.5	235.97	132	110.81	1788	839	2.13
То	tal	360	110	30.56%								

Statistics of Gao Zhou Farm PIC154 Age and weight

Weight gain was limited by stocking density when 12000-13000 batches were raised to 115 kg

Weight, kg	Appropriate space (m ² /pig)	Number of pigs raised in appropriate density (based on 16.2m ² /pen)	12000 batches, number of pigs/pen (based on 63 pens)	13000 batches, number of pigs/pen (based on 63 pens)	Daily weight gain decreased 5% (m²/pig)	Number of pigs with a 5% decrease in daily gain (based on 16.2m ² /pen)	
23	0.28	59	48	52	0.23	69	
33	0.34	47			0.29	56	
45	0.42	38	24 Science-driven solut			0.36	45
60	0.52	31			0.44	37	
75	0.60	27			0.51	32	
90	0.68	24			0.58	28	
100	0.73	22		26	0.62	26	
115	0.80	20		utions [®]	0.68	24	
120	0.82	20			0.70	23	
125	0.84	19			0.72	22	
135	0.88	19			0.76	21	
140	0.89	18			0.77	21	

The Gonyou et al. (2006) study provided a stocking density parameter (appropriate density = $0.0336 * BW \land 0.667$) and found that for every 1% decrease in stocking density, feed intake decreased by 0.252%.

Planning of Science-drivenselution®

nutrition system

Planning of Precision Nutrition System

Subsequent nutrition work

- Accurate nutrition determination: carry it out on a regular basis and establish 6750 model standard; carry out accurate nutrition determination of breeding pigs successively;
- Establishment of dynamic evaluation system for precision raw material database;
- Precise supply: According to the precise nutrition needs, the precise implementation of the feed budget needs to rely on more intelligent equipment to reduce waste;
- Establishment of source emission reduction technology system: emission reduction technology of dietary carbon, nitrogen and phosphorus

Nutrient Requirements of Swine Elevent	th Revised Edition 2012	Nutrient balances	Initial I Final I	body weig body weig	ht - ht -	kg kg			
CORNELIS F. M. DE LANGE. University of Guelph. Guelph. Ontario	RUTHIE S. ARIETI. Research Associate			Nitrogen	Phospho	orus	Carbon		
GRETCHEN M. HILL, Michigan State University, East Lansing	DAVID BRUTON, Programmer Consultant	n colutio Intake	& wastage	š	-			kg/pig	
RIAN J. KERR, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa	Science-unve	In solutions.	Retention		×-		-	ka/pia	
AERLIN D. LINDEMANN, University of Kentucky, Lexington			Retention					% of inta	ko
PHILLIP S. MILLER, University of Nebraska, Lincoln			Everation					lon (min	NC
IACK ODLE, North Carolina State University, Raleigh HANS H. STEIN, University of Illinois, Urbana Champaign			Excretion				-	kg/pig	
NATHALIE L. TROTTIER, Michigan State University, East Lansing									
NARNINGS Knowledge of nutritional constraints and limitations is essential for the proper use of nutrient requirements in tables and especially those									
WARNINGS	use of nutrient requirements in tables and especially those			此值计=粗蛋 糖 + 棉子糖 + 糖 - 水苏糖 +	白x 0.53 + 粗脂 +水苏糖 + 毛蕊 · 毛蕊花糖) x 0.4	肪x 0.76 + 花糖) x 0.4 45.	淀粉x 0.44 2 + (有机残	▶ (乳糖 + 蔗 舀物 - 棉子	
WARNINGS Knowledge of nutritional constraints and limitations is essential for the proper generated by computer programs. Because of the many variables involved au nterpreting outputs, the NRC makes no claim for the accuracy of this software f you understand and accept these warnings, click on Accept to continue.	use of nutrient requirements in tables and especially those nd judgments that must be made in choosing inputs and e and the user is solely responsible for risk of use.	D ligin Total DF Insol DF Sol D	Addition F Organic	此值计=粗蛋 糖 + 棉子糖 + 糖 - 水苏糖 + al values Digestibilit	白x 0.53 + 粗脂 +水苏糖 + 毛蕊 · 毛蕊花糖) x 0.4 Carbon	肪x 0.76 + 花糖) x 0.43 45. Fotal amin Arg	· 淀粉x 0.44 2 + (有机残) no acid corr His II	+ (乳糖 + 蔗 習物 - 棉子 tent (%) e Leu	Lys
WARNINGS Knowledge of nutritional constraints and limitations is essential for the proper generated by computer programs. Because of the many variables involved an nterpreting outputs, the NRC makes no claim for the accuracy of this software f you understand and accept these warnings, click on Accept to continue. Accept	use of nutrient requirements in tables and especially those nd judgments that must be made in choosing inputs and e and the user is solely responsible for risk of use.	D ligin Total DF Insol DF Sol Di	Additior F Organic	此值计=粗蛋 糖 + 棉子糖 + 糖 - 水苏糖 + al values Digestibilit	白x 0.53 + 粗脂 +水苏糖 + 毛蕊 ・毛蕊花糖) x 0.4 Carbon Carbon	防x 0.76 + 花糖) x 0.44 45. Fotal amin Arg	·淀粉x 0.44 2 + (有机残 no acid cor His II otalHis Tota	▶ (乳糖 + 蔗 留物 - 棉子 tent (%) ▷ Leu Ille TotalLeu T	Lys
VARNINGS Knowledge of nutritional constraints and limitations is essential for the proper generated by computer programs. Because of the many variables involved an nterpreting outputs, the NRC makes no claim for the accuracy of this software f you understand and accept these warnings, click on Accept to continue. Accept	use of nutrient requirements in tables and especially those nd judgments that must be made in choosing inputs and e and the user is solely responsible for risk of use.	D ligin Total DF Insol DF Sol D 8.3 3.4	Additior F Organic 60.85	此值计=粗蛋 糖 + 棉子糖 + 糖 - 水苏糖 + al values Digestibilit [*] 45	白x 0.53 + 粗脂 +水苏糖 + 毛蕊 ・毛蕊花糖) x 0.4 Carbon Carbon 38.8	肪x 0.76 + 花糖) x 0.42 45. Fotal amin Arg FotalArg To 0.71	淀粉x 0.44 2 + (有机残) no acid cor His II otalHis Tota 0.37 0.0	+ (乳糖 + 蔗 留物 - 棉子 tent (%) e Leu Ille TotalLeu T 58 1.21	Lys ^r otalLy 0.74
VARNINGS Knowledge of nutritional constraints and limitations is essential for the proper lenerated by computer programs. Because of the many variables involved an interpreting outputs, the NRC makes no claim for the accuracy of this software you understand and accept these warnings, click on Accept to continue. Accept	use of nutrient requirements in tables and especially those nd judgments that must be made in choosing inputs and e and the user is solely responsible for risk of use.	D ligin Total DF Insol DF Sol D 8.3 3.4	Additior F Organic 60.85 14.75	此值计=粗蛋 糖 + 棉子糖 + 糖 - 水苏糖 + al values Digestibilit 45 53	白x 0.53 + 和脂 +水苏糖 + 毛蕊 - 毛蕊花糖) x 0.4 Carbon - T 38.8 42.5	肪x 0.76 + 花穂) x 0.43 45. Fotal amin Arg FotalArg To 0.71 0.58	淀粉x 0.44 2 + (有机残 no acid cor His II otalHis Tota 0.37 0.0	← (乳糖 + 庶 留物 - 棉子 tent (%) e Leu Ille TotalLeu T i8 1.21 i1 0.88	Lys FotalLy 0.74 0.41
VARNINGS (nowledge of nutritional constraints and limitations is essential for the proper penerated by computer programs. Because of the many variables involved a. nterpreting outputs, the NRC makes no claim for the accuracy of this software I you understand and accept these warnings, click on Accept to continue. Accept If the Accept button doesn't work.	use of nutrient requirements in tables and especially those nd judgments that must be made in choosing inputs and e and the user is solely responsible for risk of use.	D ligin Total DF Insol DF Sol D 8.3 3.4 2.28 15.35	Additior F Organic 60.85 14.75 23.87	此值计=租纸 糖 + 棉子糖 + 糖 - 水苏糖 + al values Digestibilit 45 53 45	白x 0.53 + 和脂 +水苏糖 + 毛蕊 - 毛蕊花糖) x 0.4 Carbon 7 38.8 42.5 40.4	肪x 0.76 + 花樹) x 0.43 45. Total amin Arg TotalArg To 0.71 0.58 0.53	淀粉x 0.44 2 + (有机残 ho acid cor His II otalHis Tota 0.37 0.0 0.22 0.9	+ (乳糖 + 蔗 名物 - 棉子 tent (%) - Leu Ille TotalLeu T 	Lys FotalLy 0.74 0.41 0.4

At present, the Kingkey database is in urgent need of improving the perfection of the database under the current situation of complicated use of raw materials. According to the communication between experts and peers, the subsequent database is built with reference to CVB.

Updating the nutritional parameters of raw materials

Raw material detection parameters

Updating the online raw material database model by updating the key detection parameters of the raw material and outputting the nutrition parameter data of the raw material

Raw material net energy evaluation model

According to the key indicators of raw materials, the net energy nce-driven so evaluation models of different types of raw materials are classified to evaluate the value of raw materials more accurately. Updating the nutritional parameters of raw materials

> Update the digestibility index of raw materials, dietary fiber parameters, fatty acid parameters and other key indicators, and improve the database

The significance of dynamic database -- precise formula +exploring technology and procurement value 「京基智农^{®®®®®®} KINGKEY SMART AGRI

Source	China	Canada	UAE	India
moisture	11.2	11.4	7.6	9.6
dry matter	88.8	88.6	92.4	90.4
crude ash%	5.8	5.8	6.4	11.4
crude protein%CP	39.1	39.7	37.9	36.8
crude fat g/kg EE	39.0	65.0	28.0	24.0
crude fibre %CF	11.0	11.2	11.9	8.9
acid detergent fiber % ADF	16.8	21.0	19.6	17.8
neutral detergent fiber % NDF	19.9	23.6	23.2	20.7
corn 3000/soybean meal 4300 value assessment	3617	3743	S3589 nce-	driv <u>3440</u> sol

Table 1 Raw material indexes of rapeseed meal from different sources

Table 2 Amino acid levels of rapeseed meal from different sources

Source	China	Canada	UAE	India
lysine	2.68	2.55	2.59	2.02
methionine	0.69	0.72	0.68	0.62
cystine	0.56	0.57	0.53	0.52
threonine	1.56	1.53	1.46	1.33
tryptophan	0.4	0.4	0.44	0.42
isoleucine	1.47	1.5	1.41	1.36
arginine	2.37	2.43	2.23	2.43
Phe	1.35	1.44	1.3	1.33
histidine	1.03	1.02	0.96	0.95
leucine	2.52	2.56	2.4	2.29
tyrosine	0.81	0.83	0.78	0.79
valine [®]	1.67	1.63	1.56	1.45
alanine	1.52	1.53	1.45	1.35
aspartic acid	2.48	2.5	2.35	2.17
glutamic acid	5.95	6.19	5.7	5.75
glycine	1.88	1.88	1.77	1.73
proline	1.87	1.9	1.77	1.78
serine	1.38	1.4	1.32	1.22
Total amino acid	31.79	32.18	30.26	29.09

1. The value difference of rapeseed meal from different sources is more than 303 yuan. Without accurate dynamic database, it is impossible to quantify the value of raw materials with different indicators;

2、 The dynamic database is not only more accurate at the formulation level, but also plays a greater role in the procurement decision-making level. (Imported raw materials in Guangdong are miscellaneous/excessive)

- Thanks to Jiang Zongyong, a researcher of Guangdong Academy of Agricultural Sciences (my tutor) and his team for giving precise nutrition technical guidance!
- Thank the Kingkey Smart Agri platform and all its members for their cooperation in the successful implementation of the 6750 model of accurate nutrition determination !
- > Looking forward to sharing more achievements in the future!