Selecting quality gilts: Key considerations for improved sow lifetime productivity

Jennifer Patterson

Leman China Swine Conference November 6-8th, 2022

Outline

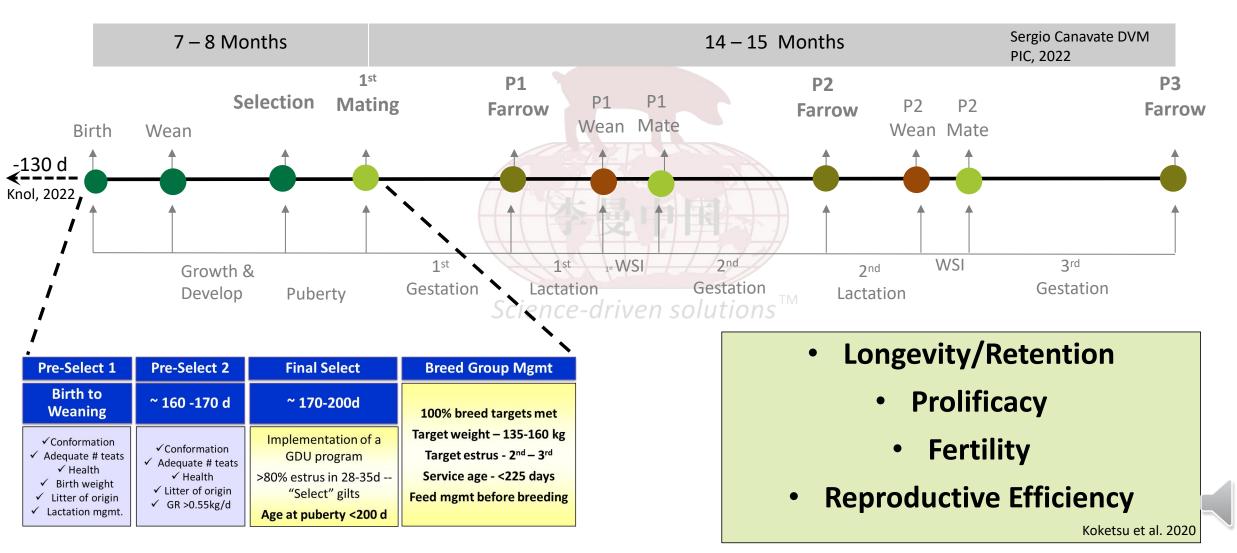
- 1. Introduction and background
- 2. Key considerations for improved sow lifetime productivity
 - A gilt becomes a replacement female at birth
 - Early responses to effective boar stimuli in the GDU is the critical selection tool
 - Appropriate management for body state at breeding
- 3. Conclusions

Sow Lifetime Productivity

- Sow lifetime productivity (SLP)
 - Gilts are the foundation of good production (Tubbs, 2015)
 - Gilts drive farm success now and in the future (Ketchem and Rix, 2015)
- Good gilt management is often overlooked.
- Farms still lacking gilt development programs.
- There are challenges in implementing gilt management programs.
- There are several key aspects to gilt development not just a single factor contributing to the success of a GDU.

STAGES OF A GILT REPLACEMENT PROGRAM

A gilt becomes a potential replacement female at birth!


Pre-Select 1	Pre-Select 2	Final Select	Breed Group Mmgt
Birth -Weaning	~ 140 d	~ 170 - 200 d	100% breed targets met
 ✓ Conformation ✓ 14 + teats 	 ✓ Conformation ✓ 14+ teats 	-Direct boar contact	100% Select Gilts
✓ Health	✓ Health	85% estrus in 35 d	100% bred at target weight
✓ Growth✓ Birthweight	 ✓ 0.6 kg/day ✓ Litter of origin 	+~5% Non-Selects	100% bred at 2 nd -3 rd estrus
 ✓ Birthweight Pheno 			Feed mgt before breeding

Genetics, health programs, nutrition, quality of floor and slats, air flow and temperature, stocking density, PEOPLE and biosecurity ~ Dr. Gonzalo Castro (2018)

SOW LIFETIME PRODUCTIVITY

The total number of <u>quality</u> pigs weaned during the productive lifetime of a female; from the time she **becomes breeding eligible** until she leaves the herd"

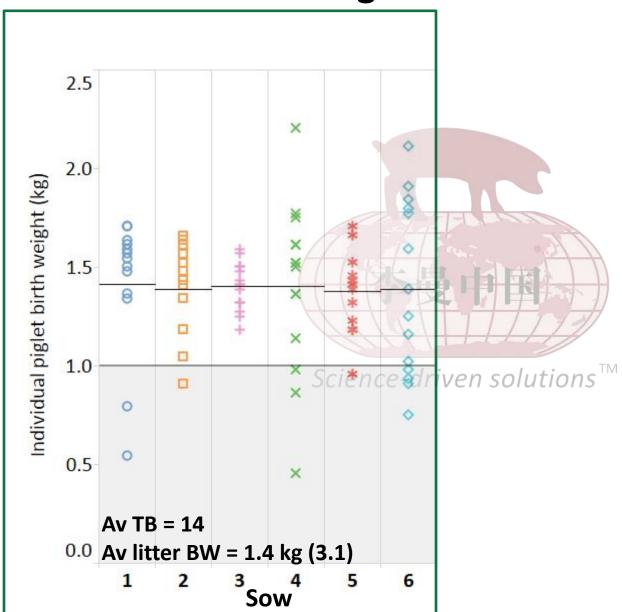
Low birth weight is an important factor in the overall efficiency of replacement gilt management.

Pre-Select 1	Pre-Select 2	Final Select	Breed Group Mmgt
Birth -Weaning	~ 140 d	~ 170 - 200 d	100% breed targets met
 ✓ Conformation ✓ 14 + teats ✓ Health ✓ Growth ✓ Birthweight ✓ Birthweight Pheno 	 ✓ Conformation ✓ 14+ teats ✓ Health ✓ 0.6 kg/day ✓ Litter of origin 	-Direct boar contact 85% estrus in 35 d +~5% Non-Selects	100% Select Gilts 100% bred at target weight 100% bred at 2 nd -3 rd estrus Feed mgt before breeding

Genetics, health programs, nutrition, quality of floor and slats, air flow and temperature, stocking density, PEOPLE and biosecurity ~ Dr. Gonzalo Castro (2018)

Low Birth Weight

- Genetic selection for litter size has increased the number of low birth weight pigs
- Low birth weight offspring are a major concern for the swine industry, detrimental consequences on:

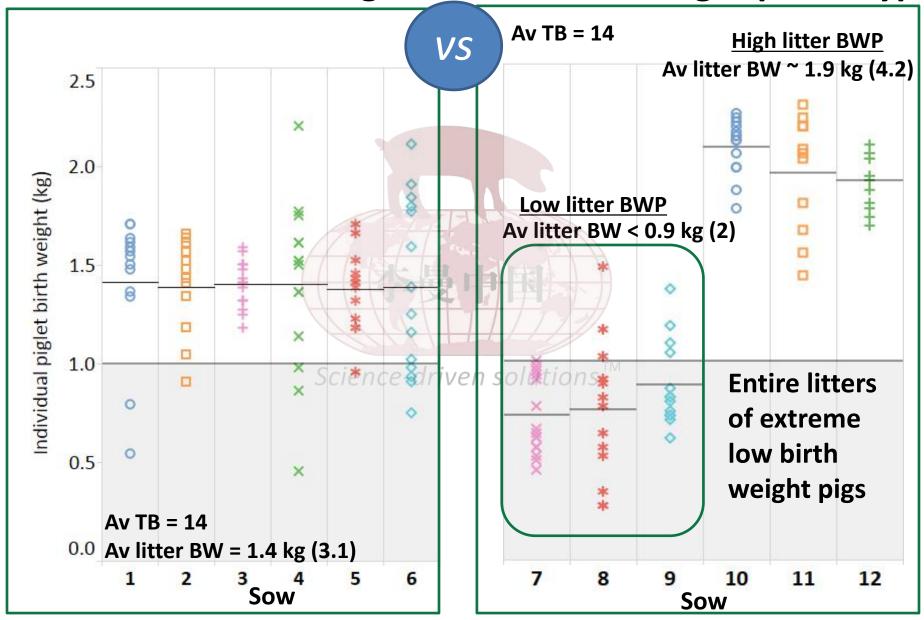


• These detrimental effects of low birth weight are not only restricted to small pigs within in a litter, but extend to entire litters (**litter phenotype**).

Low Birth Weight Gilts

8

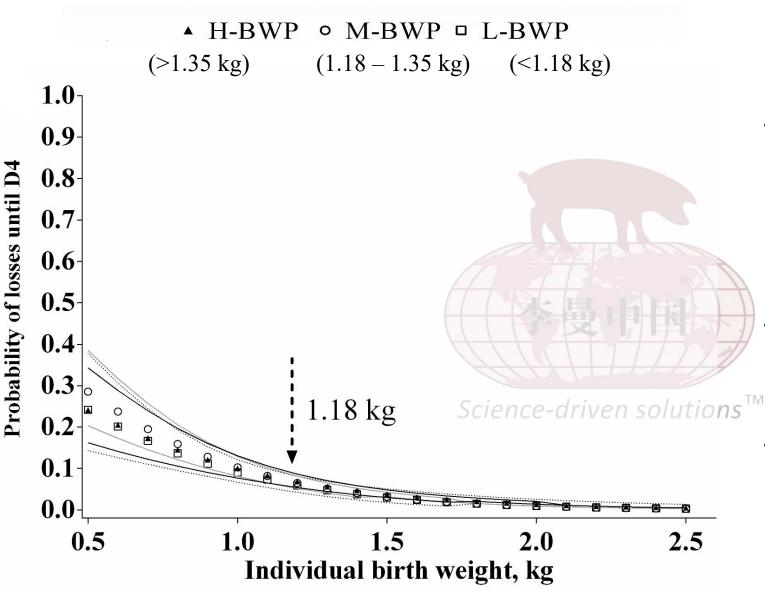
Individual birthweight


Low individual birth weight

- ✤ Gilts with a birth weight of <1.0 kg will have compromised survival and growth (Magnabosco et al., 2015).</p>
- The greater risk of mortality until weaning and non-selection contributes to economic losses in replacement gilt units (Almedia et al., 2014).
- Puberty may be delayed in lower birth weight and slower growing gilts (Patterson et al., 2020).
- Birth weight <1.0 kg negatively influences piglet production and longevity (Magnabosco et al., 2016).
- ✤ Birth weight ≤1.0 kg negatively influences the proportion of sows rebred after their sixth parity (Flowers, 2022).

Low Birth Weight Gilts

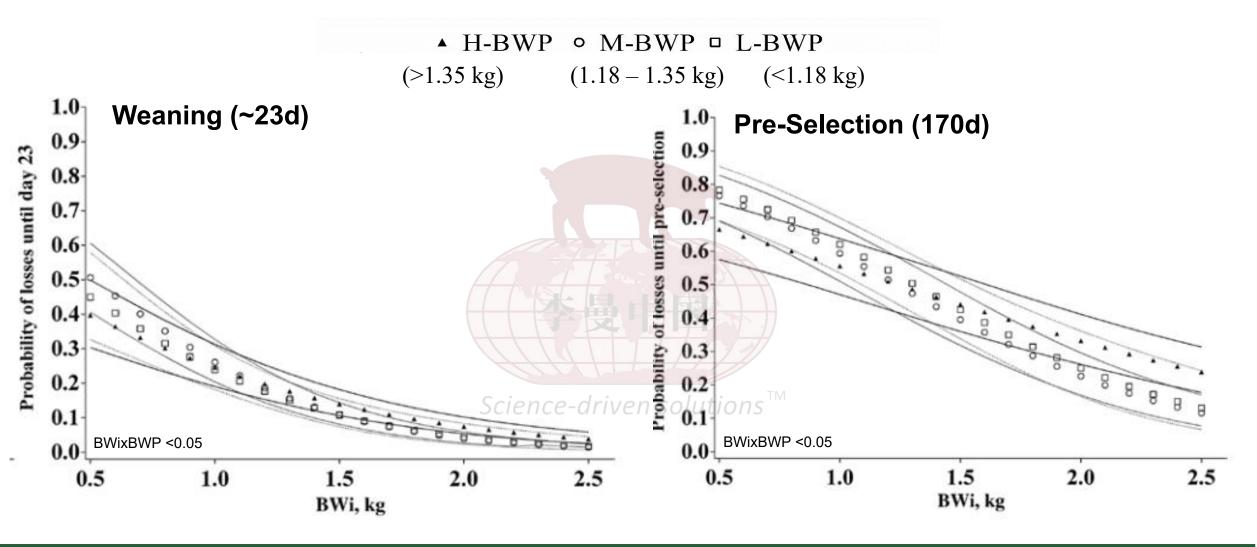
Individual birthweight Litter birth weight phenotype



Low birth weight phenotype (BWP)

- This trait is repeatable over consecutive parities and a transgenerational trait (Foxcroft et al., 2009; Smit et al., 2013; Da Silva et al., 2018).
- Gilts born to low BWP sows carry all the same risks for individual low birth weight gilts but as a "litter" trait (Foxcroft, 2012)
- Many <1 kg progeny come from the 15% of the sow population with a repeatable low birth weight phenotype</p>
- Sows with the low BWP negatively affects birth weight, body composition, postnatal survival and growth performance of terminal-line offspring, independent of the size of the litter born (Smit et al., 2013).
- Sows with the low BWT phenotype **produce very few "select" gilts.**

Selection Efficiency


- Gilts with an individual birth weight <1.18 kg were at risk for increased mortality and loss until 4 d of age
 - Likely due to early crushing and poorer preweaning survival.
- Post-farrowing (Day 1) care is essential.

Selection Efficiency

000

Low individual BW is a primary concern for non-selection of replacement gilts.

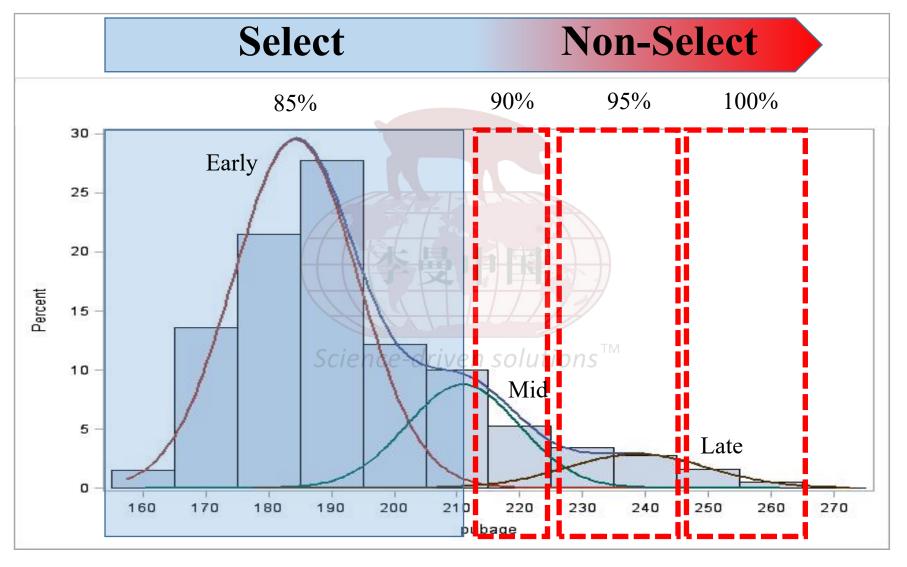
Management Strategies (low birth weight gilts):

V Post-farrowing (Day 1) care:

- Reduce chilling/hypothermia (Stewart, 2022)
- Ensure adequate colostrum ingestion (>300 g/d) (Stewart, 2022)
- Strategic cross fostering of replacement females reduce size of lactation litter (Flowers, 2022)
- **Replacement gilts should be at least 24 d old at**
- weaning (Faccin, 2022) Science-driven solutions
- ☐ Non-Selection of low birth weight gilts at weaning

Management Strategies (low birth weight phenotype sows):

- Determine sow phenotype early on maternal sows (weigh litters or individual pigs).
- Cull sows with a <u>repeatable</u> low LBW phenotype at the level of the production nucleus.
- Efficiency of gilt replacement programs will be improved by early culling of 10-15% of low birth weight phenotype sows.
 - Increased efficiency of genetic transfer program.
 - Improved retention rate of gilts through the GDU.
 - More select gilts (higher SLP) produced per sow bred.

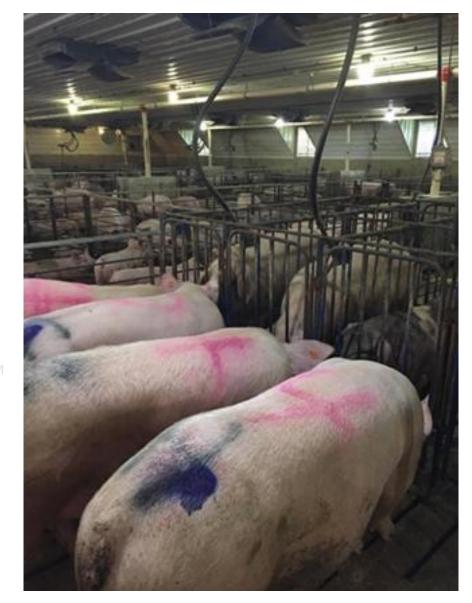

Early responses to effective boar stimuli is <u>the</u> critical selection tool

Pre-Select 1	Pre-Select 2	Final Select	Breed Group Mmgt
Birth -Weaning	~ 140 d	~ 170 - 200 d	100% breed targets met
 ✓ Conformation ✓ 14 + teats ✓ Health ✓ Growth ✓ Birthweight ✓ Birthweight Pheno 	 ✓ Conformation ✓ 14+ teats ✓ Health ✓ 0.6 kg/day ✓ Litter of origin 	-Direct boar contact 85% estrus in 35 d +~5% Non-Selects	100% Select Gilts 100% bred at target weight 100% bred at 2 nd -3 rd estrus Feed mgt before breeding

Genetics, health programs, nutrition, quality of floor and slats, air flow and temperature, stocking density, PEOPLE and biosecurity ~ Dr. Gonzalo Castro (2018)

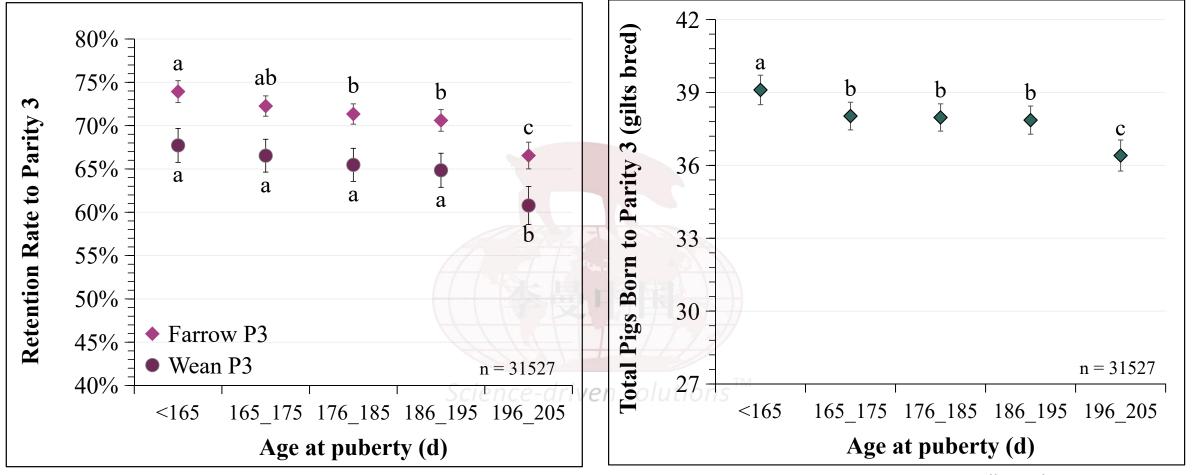
Early responses to effective boar stimuli is the critical selection tool

~95% of gilts will cycle in 100 days.... BUT....


Vallet, 2015

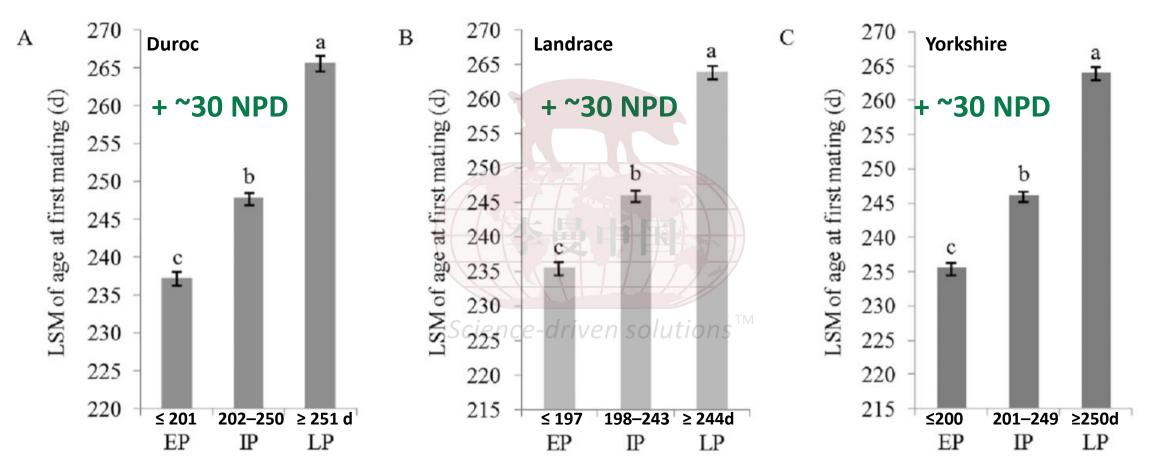
Age at puberty

Estrus characteristics at puberty are predictive of future performance:


- Stronger estrus symptoms (length and strength of the standing reflex)
 - -are more likely to farrow (Knauer et al., 2011).
- Stronger vulvar signs at puberty

 are related to strong vulvar signs
 after first weaning (Sterning et al., 1998).

Age at puberty

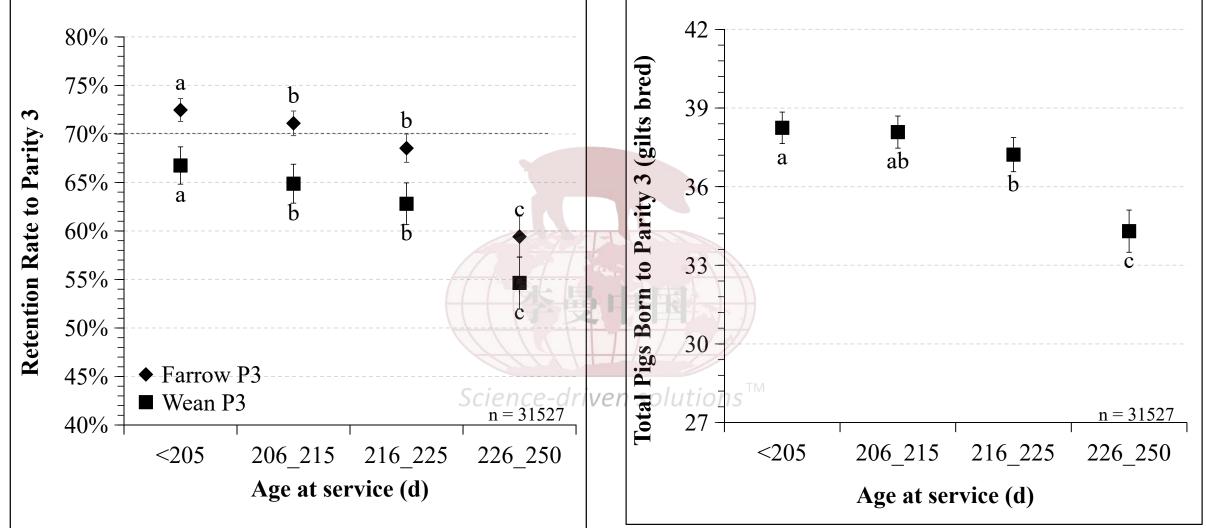


JC Pinilla and J Patterson, 2020

Earlier age at puberty is associated with greater retention and pigs born to third parity

Start boar stimulation early enough (~170 days). Gilts should have recorded heat by 200 day

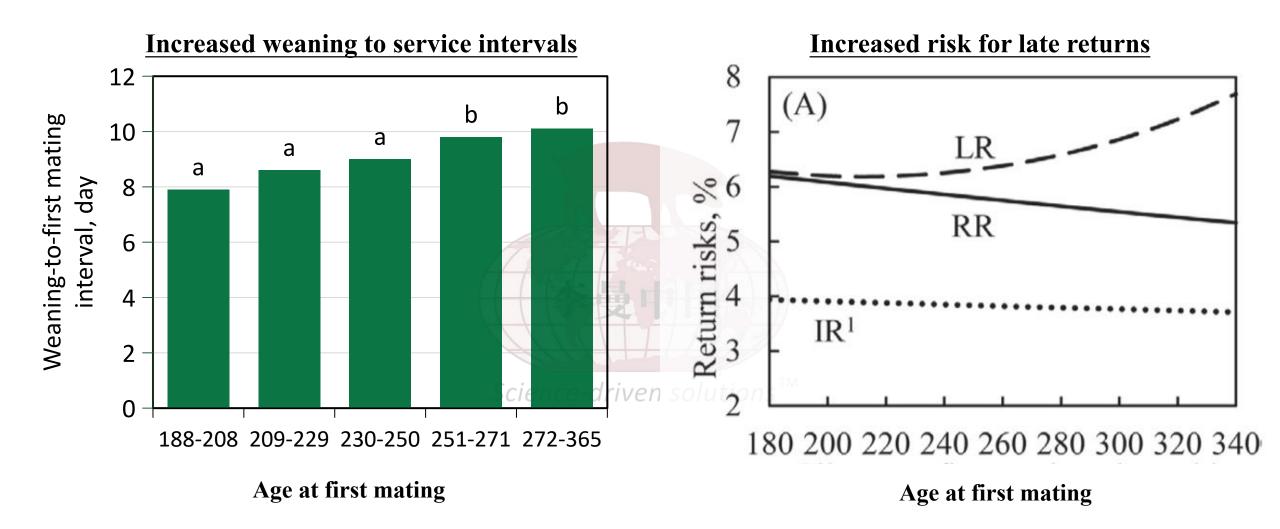
Gilts with early puberty are inseminated earlier & therefore have fewer NPD compared to gilts older at puberty



Age at first mating is intrinsically related to the biological variation in age at puberty

Li et

Age at service

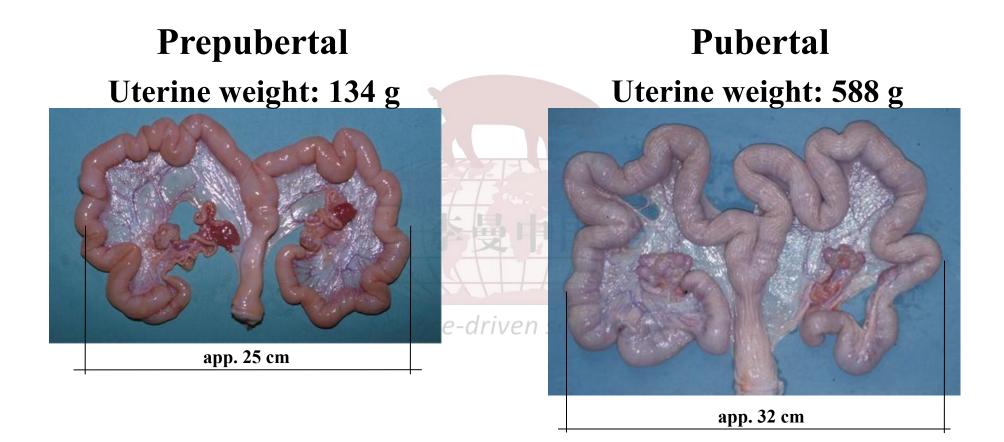


JC Pinilla and J Patterson, 2020

Gilts bred at < 225 days produce more total pigs, linked to better retention is the breeding herd

Age at service

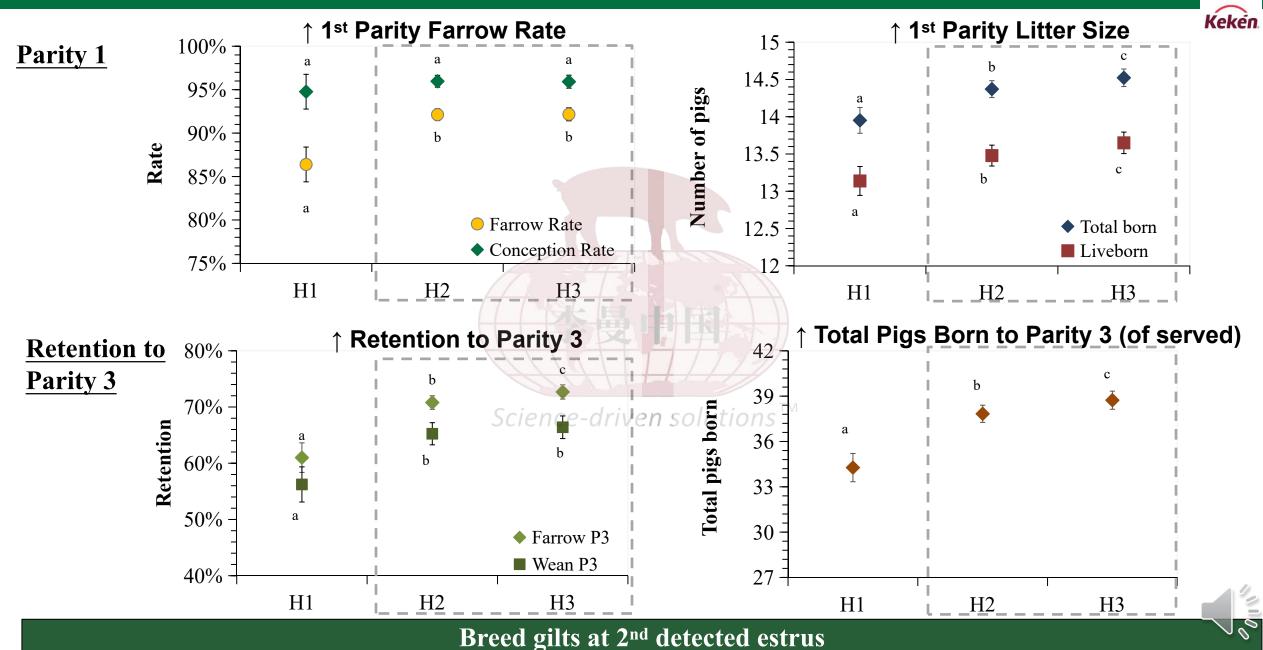
Gilts with increased age at first mating are more likely to become low efficiency sows (Koketsu et al., 2020)


Estrus at breeding, weight at breeding and feed management before breeding are key components for improved sow lifetime productivity

Pre-Select 1	Pre-Select 2	Final Select	Breed Group Mmgt
Birth -Weaning	~ 140 d	~ 170 - 200 d	100% breed targets met
 ✓ Conformation ✓ 14 + teats ✓ Health ✓ Growth ✓ Birthweight ✓ Birthweight Pheno 	 ✓ Conformation ✓ 14+ teats ✓ Health ✓ 0.6 kg/day ✓ Litter of origin 	-Direct boar contact 85% estrus in 35 d +~5% Non-Selects	100% Select Gilts 100% bred at target weight 100% bred at 2 nd -3 rd estrus Feed mgt before breeding

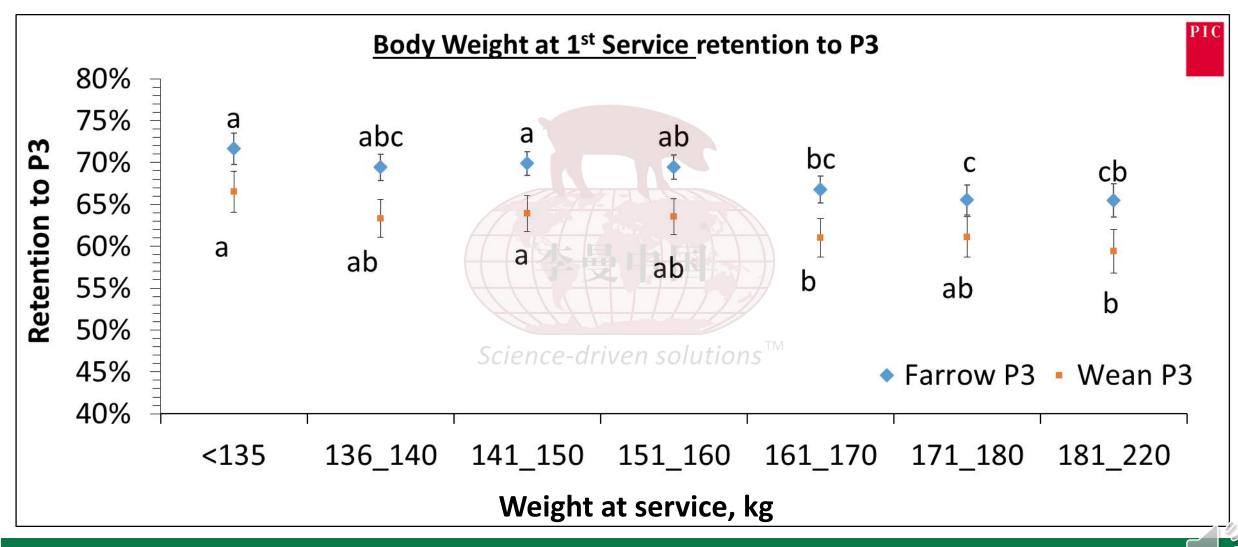
Genetics, health programs, nutrition, quality of floor and slats, air flow and temperature, stocking density, PEOPLE and biosecurity ~ Dr. Gonzalo Castro (2018)

Estrus at breeding



Johannes Kauffold (2022

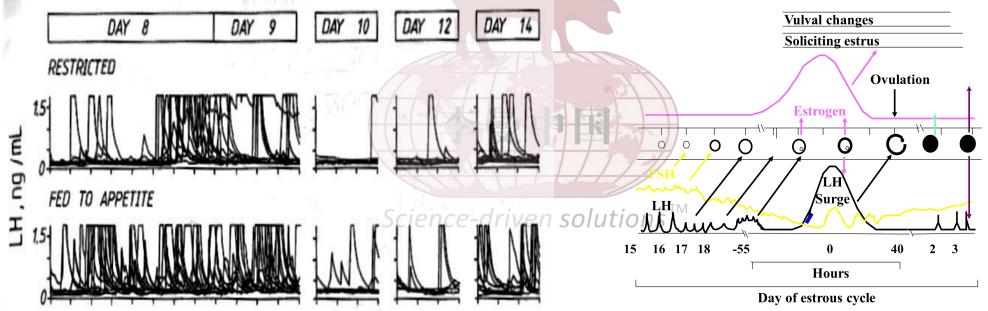
Estrus at breeding


ALBERTA

PIC

Weight at service

A heavier weight at service is associated with lower retention to 3rd parity

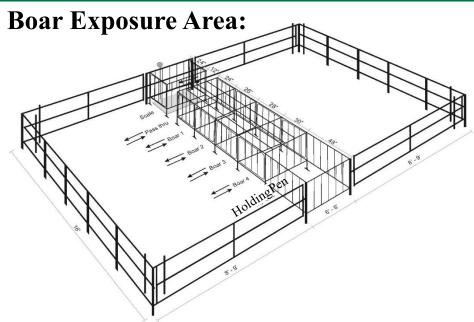

Breed gilts between 140-160 kg body weight: Avoid going beyond that.

Avoid breeding gilts too heavy:

- Gilts bred >170 kg:
 - risk of low retention over 3 parities.
 - risk for locomotion problems over 3 parities (Amaral Filha, et al,.
 2008).
- Heavy gilts at 1st service:
 - Tend to be heavy at a farrowing
 - Have more demands for maintenance (Bortolozzo et al., 2009).
 - Increased risk of stillborns (Amaral Filha et al., 2008; Bortolozzo et al., 2009; Faccin et al., 2017)
- Heavy gilts during gestation and lactation:
 - Achieve less than optimal productivity and feed utilization (Kim et al 2016).

Management of feed intake

- Any event that disrupts normal feed intake in the gilt <u>will immediately</u> impact LH secretion and remove the critical priming effect of LH secretion on follicular development (Booth et al. 1996).
- This lack of LH "priming" affects follicle and oocyte quality, and gilt fertility if bred.


• The feed level provided during the first cycle after pubertal estrus is essential to establish the ovulation rate and the potential litter size (Faccin et al., 2022).

Risk situations for reduced feed intake at critical stages of gilts development would include:

- 1. Remixing of gilts immediately before boar stimulation
- 2. Crowding that limits feed intake in timid gilts
- 3. Health-type incidents at any of these times
- 4. Relocating gilts within 15 days prior to breeding
- 5. Water not flowing well in the troughs
- 6. Fighting, regroupings, fear.

Key components of a GDU program

Established Puberty Stimulation Protocols:

Time Point	Action: group by group
D1-13	Direct (and fenceline) contact with boars
D14	Remix all non-cyclic gilts
D23	 "Opportunity" (known non-cyclic) gilts without HNS receive PG600
D20.25	 All eligible gilts are identified

Gilts without HNS are culled

Fenceline Contact:

Record Keeping:

D28-35

				28				13/1	12	13		15	6	7	18	1
Gilt ID .	1	2	3	4	5	6	7	'8	9	10	11	12	13	14	15	ĺ
66072	5	F	3	20			-	-				-	6	2	in	
073		-							1		3	P	12	80	12	
074				-					1	. 4		1	1	3	5	
075	Cr	icl.	d	m	U	41	fire	en	6					5	F	
016	14		-	1	3	5	20	60	8			2.2			,	
077	-						1		-			3	3	5	24	
078	P															
079	3	3?	2	.4	1									1.1		
080			100	1.00		1.00				3	3	FF	16	250	5	
081	5	8	25	6												
082			-	1				2	3	3	5	FL	(1	84	ł	
083	3	3	1		20	200		3	3	5	PR	2	52	D		
084					2	-2	7	3	3	Es	1 6	27	5			
085			1.1	1		-		-	2	3	5	55	2	65	r	
086					170											
087	15				3	3	3	12	5	5)						
088				200	-	-		6	1	1				I		
089	1					-				-		2	3	3	3	
090			2	1.5				2.4				3	2	3	12	
1091				1.1					-		1	王	2	2	5	ĺ
092	1			100			5	5	8	25	2	-	1	1	÷	
093	1				-		-			-	2				1	
094				-	2	3	2	57	53	12	12					
095	1	1.04		•	-	1		-	-	100	3	3	5	12	1	

Take Home Messages: Start With The End in Mind!

- 1. Low birth weight (<1 kg) is predictive of non-selection and low retention
- 2. A low birth weight phenotype reduces the efficiency of a gilt replacement program
- **3. Early puberty**: Start boar stimulation early enough (~170 days). Gilts should have a recorded heat by 195 days.
- 4. Breed gilts on at least 2nd detected estrus: Delay to 3rd estrus only to meet minimum weight targets.

Science-driven solutions[™]

Take Home Messages: Start With The End in Mind!

- 5. Breed gilts between 140-160 kg body weight: Avoid going beyond that.
- 6. Breed gilts prior to 225 d of age: Older than that they are likely overweight!
- 7. Avoid risk situations for reduced feed intake at critical stages of gilts development.
- 8. Implement a good gilt puberty stimulation and detection program based on proven principals. nce-driven solutions[™]

Thank-you for your attention.

Acknowledgments

